

Joint Tactical Radio System (JTRS)

SCA Developer’s Guide

Contract No. DAAB15-00-3-0001
Document Number: Rev 1.1

18 June 2002

Prepared for the

Joint Tactical Radio System (JTRS)
Joint Program Office

Prepared by:

Raytheon Company
Radios and Terminals
1010 Production Road
Fort Wayne, In 46808

 Joint Tactical Radio System (JTRS)

SCA Developer’s Guide

Contract No. DAAB15-00-3-0001
Document Number: Rev 1.1

18 June 2002

Prepared for the

Joint Tactical Radio System (JTRS)
Joint Program Office

Prepared by:

Raytheon Company
Radios and Terminals
1010 Production Road
Fort Wayne, In 46808

SCA Developer’s Guide Rev 1.1

Raytheon Page 1 of 78

1 INTRODUCTION..4

1.1 SCOPE... 4
1.2 TERMINOLOGY .. 4

2 SCA OVERVIEW ..6

2.1 INTRODUCTION.. 6
2.2 ARCHITECTURE DEFINITION METHODOLOGY.. 7
2.3 ARCHITECTURE OVERVIEW... 8
2.4 FRAMEWORK INTERFACES... 10

2.4.1 DomainManager...10
2.4.2 ApplicationFactory...10
2.4.3 Application ...10
2.4.4 File...10
2.4.5 FileSystem..10
2.4.6 FileManager...11

2.5 BASE APPLICATION INTERFACES.. 11
2.5.1 Port ..11
2.5.2 LifeCycle...13
2.5.3 TestableObject...13
2.5.4 PortSupplier...14
2.5.5 PropertySet...15
2.5.6 Resource ...16
2.5.7 ResourceFactory...17

2.6 SERVICE INTERFACES... 18
2.6.1 Naming Service..18

2.6.1.1 Use of Naming Service .. 19
2.6.2 Log Service...20

2.6.2.1 Use of Log Service... 20
2.6.3 CORBA Event Service ..21

2.6.3.1 Use of Event Service.. 22

3 APPLICATION PROGRAM INTERFACE (API) OVERVIEW ...24

3.1 GENERIC PACKETS.. 25
3.2 PHYSICAL API... 25

3.2.1 Physical Real Time ...25
3.2.2 Physical Non-Real Time...25

3.3 MEDIUM ACCESS CONTROL (MAC) API .. 26
3.4 LOGICAL LINK CONTROL API... 26
3.5 I/O API... 26

4 DOMAIN PROFILE COMPONENTS ...27

4.1 SOFTWARE PACKAGE DESCRIPTOR.. 28
4.2 PROPERTIES DESCRIPTOR.. 29
4.3 SOFTWARE COMPONENT DESCRIPTOR.. 30
4.4 SOFTWARE ASSEMBLY DESCRIPTOR.. 31
4.5 PROFILE DESCRIPTOR... 32

5 DESIGN PROGRESSION...33

5.1 IDL MODELING... 33
5.2 IDL GENERATION... 34
5.3 IDL COMPILATION ... 35
5.4 CLIENT/SERVER COMPILATION.. 36
5.5 REVERSE ENGINEERING... 36

SCA Developer’s Guide Rev 1.1

Raytheon Page 2 of 78

5.6 CREATION OF SERVANT IMPLEMENTATION CLASSES ... 37
5.7 SERVANT CODE GENERATION .. 38
5.8 XML GENERATION .. 40

6 WAVEFORM DEVELOPMENT ..40

6.1 FUNCTIONAL ALLOCATION TO API DESIGN ... 40
6.1.1 Introduction..41
6.1.2 Identifying Application Functionality..42

6.1.2.1 Data and Control from Attached Device.. 42
6.1.2.2 Data and Control to Attached Device .. 42
6.1.2.3 Control from User Interface (UI)... 42

6.1.3 Functional API Mapping...43
6.1.4 Mapping Remaining Needs..44

6.2 BUILDING API LAYER DEFINITIONS.. 45
6.2.1 Introduction..45
6.2.2 Waveforms with Physical Layer ...45

6.2.2.1 Using Concrete Service Group .. 46
6.2.2.2 Instantiating Generic Building Block .. 46
6.2.2.3 Extending A Service Group ... 47
6.2.2.4 Constructing A New Service Group .. 48
6.2.2.5 Combining Service Groups to Form A New Interface .. 48
6.2.2.6 Completing the Waveform Interface.. 50

6.2.3 Waveforms with MAC Layer ...51
6.2.3.1 Explanation of the Task ... 51
6.2.3.2 Solution Using MAC Building Block(s).. 51

6.2.4 Waveforms with Link Layer...53
6.2.4.1 Explanation of the Task ... 53

6.2.5 AssemblyController..56
6.3 REFINING API DEFINITIONS WITH IMPLEMENTATION DESIGN .. 57

6.3.1 Use of Interfaces..57
6.3.1.1 Implementing A Provides Port... 58
6.3.1.2 Implementing A Uses Port... 58
6.3.1.3 Implementing Multiple Ports ... 58
6.3.1.4 Implementing getPort().. 58

6.3.2 Model for Physical Layer ..59
6.3.2.1 Unified Design ... 59
6.3.2.2 Partitioned Design .. 60

6.3.3 Model for MAC Layer ..61
6.3.4 Model for Link Layer..62
6.3.5 Model for AssemblyController..63

7 DEVICE CREATION ...64

7.1 DEVICE INTERFACES... 64
7.1.1 Device..64
7.1.2 LoadableDevice...65
7.1.3 ExecutableDevice..66
7.1.4 AggregateDevice...67
7.1.5 DeviceManager ...67
7.1.6 Defining the Device ..69

7.1.6.1 Selecting the Appropriate Device Interface ... 69
7.1.6.2 Designing a Device Servant ... 70
7.1.6.3 Device Configuration Descriptor... 72

7.2 DEVICE PACKAGE DESCRIPTOR.. 73
7.3 DOMAINMANAGER CONFIGURATION DESCRIPTOR... 75

8 UI DISCUSSION ..76

8.1 INTRODUCTION.. 76
8.2 DIRECT CORBA LINKS ... 76

SCA Developer’s Guide Rev 1.1

Raytheon Page 3 of 78

8.3 NON-DIRECT CORBA LINKS ... 77

9 APPENDICES ...78

9.1 APPENDIX A – XML INTRODUCTION.. 78
9.2 APPENDIX B – IDL FOR XYZ WAVEFORM PHYSICAL LAYER... 78
9.3 APPENDIX C – HEADER FILES FOR XYZ WAVEFORM PHYSICAL LAYER.. 78
9.4 APPENDIX D – XML FOR A SAMPLE WAVEFORM ... 78
9.5 APPENDIX E – XML FOR A SAMPLE DEVICE ... 78

SCA Developer’s Guide Rev 1.1

Raytheon Page 4 of 78

1 Introduction

This Developer’s Guide provides design guidelines for developing compliant waveform applications and
devices for the Software Communications Architecture (SCA) published by the Joint Tactical Radio
System (JTRS) Joint Program Office (JPO). This guide is organized as follows:

?? an overview of the SCA and its services
?? application program interface (API) overview
?? domain profile discussion
?? design progression
?? waveform development
?? device creation
?? user interface
?? appendices

This guide also contains working examples of IDL (Interface Definition Language) and XML (eXtensible
Markup Language). This document is intended to be a living document that is to be updated as necessary
to reflect the current version of the SCA.

1.1 Scope
This guide is written for users developing SCA-compliant waveforms and/or devices. A software
framework is defined in the SCA, and is comprised of:

?? a Portable Operating System Interface (POSIX)-compliant Operating System (OS)
?? a distributed computing middleware, CORBA
?? a set of open-software interfaces geared toward embedded distributed communications systems, Core

Framework (CF)

These three elements make up the SCA Operating Environment (OE).

We have assumed that the reader has some knowledge of the SCA. Further, we assume that the reader has
a high degree of experience with object-oriented design, CORBA, UML, and high-level languages. Coding
examples are provided using the C++ programming language. A brief definition of some of the concepts
and terms used in this document is found in the next section.

1.2 Terminology
There are a number of terms used throughout this document – some of the more essential are explained at
this time.

OMG (Object Management Group) – In 1989, the OMG was formed to address the problems of developing
portable distributed applications for heterogeneous systems. It is now the world’s largest software
consortium, with more than 800 members. Two key specifications produced by the OMG, the OMA
(Object Management Architecture) and its core, the CORBA specification, provide a flexible architectural
framework that accommodates a wide variety of distributed systems.

CORBA (Common Object Request Broker Architecture) provides platform-independent programming
interfaces and models for portable distributed-oriented computing applications. CORBA is the middleware
of the SCA OE. Its independence from programming languages, computing platforms, and networking
protocols makes it highly suitable for the development of new applications and their integration into
existing distributed systems. CORBA has associated with it some unique terminology; the most important
of which is explained in the following list.

SCA Developer’s Guide Rev 1.1

Raytheon Page 5 of 78

?? A CORBA object is a “virtual” entity capable of being located by an ORB and having client requests
invoked on it. It is virtual in the sense that it does not really exist unless it is made concrete by an
implementation written in a programming language.

?? A target object, within the context of a CORBA request invocation, is the CORBA object that is the
target of that request.

?? A client is an entity that invokes a request on a CORBA object.
?? A server is an application in which one or more CORBA objects exist.
?? A request is an invocation of an operation on a CORBA object by a client.
?? An object reference, also known as an IOR (Interoperable Object Reference) is a handle used to

identify, locate, and address a CORBA object.
?? A servant is a programming language entity that realizes (i.e., implements) one or more CORBA

objects. Servants are said to be incarnate CORBA objects because they provide bodies, or
implementations, for those objects. Servants exist within the context of a server application. In C++,
servants are object instances of a particular class.

IDL (Interface Definition Language) – The OMG IDL is CORBA’s fundamental abstraction mechanism
for separating object interfaces from their implementations. OMG IDL establishes a contract between
client and server that describes the types and object interfaces used by an application. This description is
independent of the implementation language, so it does not matter whether the client is written in the same
language as the server.

IDL Definitions are compiled for a particular implementation language by an IDL compiler. The compiler
translates the language-independent definitions into language-specific type definitions and APIs
(Application Program Interface). These type definitions and APIs are used by the developer to provide
application functionality and to interact with the ORB. The translation algorithms for various
implementation languages are specified by CORBA and are known as language mappings. CORBA
defines a number of language mappings including those for C++, Ada, and Java (along with many others).

An IDL compiler produces source files that must be combined with application code to produce client and
server executables1. Details, such as the names and numbers of generated source files, vary from ORB to
ORB. However, the concepts are the same for all ORBs and implementation languages. The outcome of
the development process is a client executable and a server executable. Section 5 provides more detail.

UML (Unified Modeling Language) is a standard (modeling) language for writing software blueprints2.
UML enables system builders to create blueprints that capture their visions in a standard, easy-to-
understand way and communicate them to others. It may be used to visualize, specify, construct, and
document the artifacts of a software-intensive system. The UML is more than just a graphical language.
Rather, behind every part of its graphical notation there is a specification that provides a textual statement
of the syntax and semantics of that building block. For example, behind a class icon is a specification that
provides the full set of attributes, operations (including their full signatures), and behaviors that the class
embodies; visually, that class icon might only show a small part of this specification. UML diagrams are
used in numerous ways – here, however, we focus on two: to specify models from which an executable
system is constructed (forward engineering) and to reconstruct models from parts of an executable system
(reverse engineering).

1 “Advanced CORBA Programming With C++” (Addison-Wesley Professional Computing) Henning &
Vinoski
2 “The Unified Modeling Language User Guide” (Addison Wesley) Grady Booch, James Rumbaugh, Ivar
Jacobson, p13

SCA Developer’s Guide Rev 1.1

Raytheon Page 6 of 78

XML (eXtensible Markup Language) is a markup language designed specifically for delivering
information over the World Wide Web. XML is used within the SCA to define a profile for the domain in
which waveform applications can be managed. XML’s definition consists of only a bare-bones syntax3.
When you create an XML document, rather than use a limited set of predefined elements, you create your
own elements and assign them any names you like – hence the term extensible. You can therefore use
XML to describe virtually any type of document, from a musical score to a digitally-programmable radio.
However, for JTRS, this extensibility is limited to the SCA-defined Document Type Definitions (DTDs).
A DTD provides a list of the elements, attributes, notations, and entities contained in a document, as well as
their relationship to one another. DTDs specify a set of rules for the structure of a document. The DTD
defines exactly what is allowed to appear inside a document. Appendix A provides an introduction to
XML. SCA 2.2 Attachment 1 To Appendix D of the SCA contains the JTRS DTDs.

2 SCA Overview

2.1 Introduction
This section provides an overview of the SCA with emphasis on the Core Framework (CF) Base
Application, Framework Control, and Framework Services Interfaces. The CF is the essential (“core”) set
of open application-layer interfaces and services that provide an abstraction of the underlying software and
hardware layers for software application designers. The CF consists of:

?? Base Application Interfaces (Port, LifeCycle, TestableObject, PropertySet, PortSupplier,

ResourceFactory, and Resource) that can be used by all software applications
?? Framework Control Interfaces (Application, ApplicationFactory, DomainManager, Device,

LoadableDevice, ExecutableDevice, AggregateDevice and DeviceManager) that provide control of the
system

?? Framework Services Interfaces (File, FileSystem, FileManager) that support both core and non-core
applications, and

?? A Domain Profile that describes the properties of hardware devices (Device Profile) and software
components (Software Profile) in the system.

The SCA is not a system specification, as it is intended to be implementation independent, but a set of rules
that constrain the design of systems. The OE, consisting of the Core Framework, CORBA middleware, and
OS, imposes design constraints on waveform and other applications to provide increased portability of
those applications from one SCA-compliant radio platform to another. These design constraints include
specified interfaces between the Core Framework and application software, and restrictions on waveform
usage of Operating System APIs.

The SCA also provides a building block structure (defined in the API Supplement) for defining application
software component APIs. The building-block structure for API definition facilitates component-level
reuse and allows significant flexibility for developers to define waveform-specific APIs.

3 “XML Step By Step” (Microsoft Press) Micheal J. Young, p7

SCA Developer’s Guide Rev 1.1

Raytheon Page 7 of 78

2.2 Architecture Definition Methodology.
The architecture has been developed using an object-oriented approach depicted with UML d iagrams.
Color-coding is used to differentiate between architecture elements and applications in diagrams as shown
in Figures 2.3-1 and 2.3-2.

Core Framework (CF) elements

Commercial-Off-The-Shelf (COTS) components

Host Applications

Red Side Network and Link Applications

Security Applications

Black Side Network and Link Applications

Modem Applications

RF

SCA Developer’s Guide Rev 1.1

Raytheon Page 8 of 78

2.3 Architecture Overview.
The structure of the software architecture is shown in figure 2.3-1. The key benefits of the software
architecture are that it:

1) Maximizes the use of commercial protocols and products,
2) Isolates both core and non-core applications from the underlying hardware through multiple layers of

open, commercial software infrastructure, and
3) Provides for a distributed processing environment, through the use of CORBA, to provide software

application portability, reusability, and scalability.

The CF Module specification includes a detailed description of the purpose of each interface, the purpose
of each supported operation within the interface, and interface class diagrams to support these descriptions.

Core Framework (CF)
Commercial Off-the-Shelf

(COTS)

Applications

OE

 Red Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services

Board Support Package (Bus Layer)

Black Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services

Board Support Package (Bus Layer)

Operating System

Core Framework IDL

Non-CORBA
Modem

Components

Non-CORBA
Security

Components

Non-CORBA
 I/O

Components

RF

Modem
Components

Link, Network
Components

Security
Components

Modem
Adapter

Security
Adapter

Security
Adapter

 I/O
Adapter

 I/O
Components

MAC API LLC/Network API LLC/Network API

Link, Network
Components

Security API

Operating System

Physical
API

I/O API

(“Logical Software Bus” via CORBA)

Figure 2.3-1 Software Structure

SCA Developer’s Guide Rev 1.1

Raytheon Page 9 of 78

Figure 2.3-2 depicts the key elements of the CF and the IDL relationships between these elements.
The interfaces enclosed by the red box are the ones the waveform developer would "realize" (implement).
The Device developers are most concerned with those interfaces enclosed by the blue box. The remaining
interfaces are the responsibility of a Core Framework product.

<<Interface>>

Device <<Interface>>

Application

<<Interface>>

DomainManager

inherits
from

uses

<<Interface>>

ApplicationFactory

<<Interface>>

DeviceManager

<<Interface>>

FileManager

deviceManagers

1..*

0..*

applicationFactories

fileMgr
1

applications

0..*

uses

<<Interface>>

File

fileSys

0..1

<<Interface>>
Resource

<<Interface>>

ResourceFactory

Core Framework Interface

Implemented by
Non-Core Applications

Core Framework Interface

Implemented as
Core Application Services

Legend

<<Interface>>

FileSystem

<<Interface>>

LoadableDevice

<<Interface>>

ExecuteableDevice

<<Interface>>

AggregateDevice 0 ..*

devices

<<Interface>>

PropertySet

<<Interface>>

PropertySet
<<Interface>>

LifeCycle
<<Interface>>

TestableObject
<<Interface>>

PortSupplier
<<Interface>>

Port

Figure 2.3-2 Core Framework IDL Relationships

SCA Developer’s Guide Rev 1.1

Raytheon Page 10 of 78

2.4 Framework Interfaces
This section gives a brief overview of the Framework Control Interfaces (DomainManager,
ApplicationFactory, and Application) that provide control of the system. These interfaces manage the
registration/unregistration of applications, devices, and device managers within the domain and the
controlling of applications within the domain. The implementation of the Application, ApplicationFactory,
and DomainManager interfaces are coupled together and must therefore be delivered together as a complete
domain management implementation and service. The Fra mework Services Interfaces (File, FileSystem,
FileManager) that support both core and non-core applications are also discussed in this section.

2.4.1 DomainManager
The DomainManager interface is for the control and configuration of the system domain. It is logically
grouped into three categories: Human Computer Interface (HCI), Registration, and CF administration.
?? The HCI operations are used to configure the domain, get the domain’s capabilities (Devices, Services,

and Applications), and initiate maintenance functions. These operations are invoked by an HCI-client
capable of interfacing to the DomainManager.

?? The registration operations are used to register/unregister DeviceManagers, DeviceManager Devices,
DeviceManager Services , and Applications at startup or during run-time for dynamic device, service,
and application extraction and insertion.

?? The administration operations are used to access the interfaces of registered DeviceManagers and the
DomainManager's FileManager.

2.4.2 ApplicationFactory
The ApplicationFactory interface provides the Domain Management interface to request the creation of a
specific type of Application in the domain. The ApplicationFactory interface class is based on the OMG
Factory Design Pattern. The Software Assembly Descriptor profile (discussed further in section 6.5)
determines the type of Application that is created by the ApplicationFactory.

2.4.3 Application
The Application interface provides the Domain Management interface for the control and configuration of
an instantiated application in the domain. The Application interface class inherits the IDL interface of
Resource. A created application instance may contain Resource components and/or non-CORBA
components. An application is created by the ApplicationFactory create operation. The Application is a
proxy for the application’s assemblycontroller and application’s software components that were created.

2.4.4 File
The File interface provides the ability to read and write a file residing within a CF-compliant, distributed
FileSystem. A file can be thought of conceptually as a sequence of octets with a current file pointer
describing where the next read or write will occur. The file pointer points to the beginning of the file as a
result of the execution of the file implementation software.

2.4.5 FileSystem
The FileSystem interface defines CORBA operations that enable remote access to a physical file system.
The FileSystem interface provides the traditional operations associated with file accesses (i.e. remove,
copy, directory listing, etc.).

SCA Developer’s Guide Rev 1.1

Raytheon Page 11 of 78

2.4.6 FileManager
Multiple, distributed FileSystems may be accessed through a FileManager. The FileManager interface
appears to be a single FileSystem, although the actual file storage may span multiple physical file systems.
This is called a federated file system. A federated file system is managed using the mount and unmount
operations. Typically, the DomainManager or system initialization software invokes these operations.
The FileManager inherits the IDL interface of a FileSystem. Based upon the pathname of a directory or
file and the set of mounted FileSystems, the FileManager delegates the FileSystem operations to the
appropriate FileSystem. For example, if a FileSystem is mounted at /ppc2, an open operation for a file
called /ppc2/profile.xml would be delegated to the mounted FileSystem. The mounted FileSystem
is given the filename relative to it. In this example the FileSystem’s open operation would receive
/profile.xml as the fileName argument.
If a client does not need to mount and unmount FileSystems, it can treat the FileManager as a FileSystem
by CORBA widening a FileManager reference to a FileSystem reference. One can always widen a
FileManager to a FileSystem since the FileManager is derived from a FileSystem.

2.5 Base Application Interfaces
This section discusses the Base Application Interfaces (Port, LifeCycle, TestableObject, PropertySet,
PortSupplier, ResourceFactory, and Resource) that can be used by all software applications.

In several interface operations, a "Properties" parameter is required. In the SCA context, "Properties"
refers to a CORBA sequence of id, value pairs. Within each pair, the first element is a string naming a
property and the second element provides a value for that property.

2.5.1 Port
The Port interface provides operations for managing associations between ports. Transferring one object’s
reference to another object is a common occurrence in distributed programming. In a CORBA
environment, a reference to an object can be obtained by using dynamic stringified IORs or the Naming
Service. The SCA provides the Port interface to distribute the reference for any object to another object.
Figure 2.5-1 depicts the Port interface.

Port

connectPort(connection : in Object, name : in string) : void
disconnectPort(name : in string) : void

<<Interface>>

Figure 2.5-1 Port CORBA Interface UML

Before describing how ports are connected, the terms uses-port and provides-port must be explained. Both
are called ports, but only the uses -port needs to implement the Port interface (due to its need for the
connectPort operation). A provides-port is a type of port that provides a user-defined CORBA interface – it
does not need to implement the Port interface. The intent, then, is to connect the uses and provides ports
allowing the uses-port access to the provides-port operations.

When a client desires to connect two ports, several things must take place. A client must obtain the
reference to two component Resource interfaces, which inherit the PortSupplier interface. One of the ports
must be a uses -port and the other a provides-port. The client calls the getPort operation (on the
PortSupplier interface) for each component in the desired connection. The getPort operation returns a

SCA Developer’s Guide Rev 1.1

Raytheon Page 12 of 78

CORBA object reference. So, in the case of the uses -port, this object reference must be narrowed to a Port
interface. For the provides-port, the CORBA object reference returned from getPort needs no modification.

The client calls the connectPort operation on the uses -Port, passing it a connection id and the provides-port
CORBA object reference. A one-way connection has now been established. One-way, here, means client
to server, not the typical messaging approach intended for building unreliable signaling mechanisms (the
send-and-forget approach).

The ApplicationFactory has the requirements to establish the connections for application components
during the instantiation process of the application. . The connections to be established are described in the
application’s Software Assembly Descriptor (SAD) file.

Figure 2.5-2 is a sequence diagram depicting a simple one-way connection of two ports.

Client Component1
: Resource

Component2
: Resource

 UsesPort :
Port

ProvidesPort :
SomeInterfac
e

getPort (in
string)

getPort returns a
CORBA::Object_p
tr

getPort (in
string)

The reference returned
fromComponent2 is narrowed
toa Port
interface connectPort (in Object, in

string)

The narrowed reference (from
Component2)is used to establish a one-way
connectionfrom the UsesPort to the
ProvidesPort

someOperation
()

The input reference from
theconnectPort is narrowed to
aspecific interface and used to
callthe ProvidesPort
operations

Figure 2.5-2 Sequence Diagram of One Way Connection

SCA Developer’s Guide Rev 1.1

Raytheon Page 13 of 78

2.5.2 LifeCycle
The LifeCycle interface, which is depicted in Figure 2.5-3, provides generic operations for managing
initialization and termination of a specific object.

LifeCycle

initialize() : void
releaseObject() : void

<<Interface>>

StringSequence
<<CORBATypedef>>

Figure 2.5-3 LifeCycle Interface UML

The LifeCycle interface provides the following operations:

initialize() : void
The initialize operation is invoked on a created component of a Resource type in order to set it to its
initial, operative state. The ApplicationFactory implementation that created the Resource is
responsible for its initialization. This operation performs tasks that must occur after the component's
constructor has terminated but before the component is used. For example, the component's this
pointer may be needed for some purpose, but the this pointer is stable only after the constructor has
terminated.

releaseObject() : void
The CF ApplicationFactory implementation that is associated with the target Resource invokes this
operation as part of the Application tear down sequence prior to unloading the Resource. This
operation should free internal memory, close files, and perform whatever other tasks are needed to
return the system to its default state.

2.5.3 TestableObject
The TestableObject interface, which is depicted in Figure 2.5-4, provides a means of performing Built-In
Tests (BIT) with respect to a specific object.

UnknownProperties
invalidProperties : Properties

<<CORBAException>>

TestableObject

runTest(testid : in unsigned long, testValues : inout Properties) : void

<<Interface>>

Figure 2.5-4 TestableObject Interface UML

SCA Developer’s Guide Rev 1.1

Raytheon Page 14 of 78

The TestableObject interface provides the following operation:

runTest(testid : in unsigned long, testValues : inout Properties) : void

The runTest operation is typically invoked as part of target Resource testing at the operator’s console
as part of BIT (Built-In Tests). The parameter testid specifies which test is to be run. Inputs into the
testing process are provided as id,value pairs in testValues. Parameters testid and testValues are
described in the appropriate properties XML file, but interpretation of both parameters is completely
component dependent, as provided in the component's implementation of these functions.

2.5.4 PortSupplier
The PortSupplier interface, which is depicted in Figure 2.5-5, provides means of obtaining a reference to a
specific port for a specific object.

PortSupplier

getPort(name : in string) : Object

<<Interface>>

Figure 2.5-5 PortSupplier Interface UML

Figure 2.5-2 illustrates the use of getPort in the context of connecting a uses port to an appropriate produces
port. The PortSupplier interface provides the following operation:

getPort(name: in string) : Object
The getPort operation returns a object reference (either a Uses or a Provides port).
The returned Port object reference can be used to establish a connection between Resource
components. The getPort operation can be invoked by an external CF client on a CF Application
object returning Ports that are defined as external by the Application’s SAD XML file. The getPort
operation is also invoked by the ApplicationFactory implementation that has established a Resource
object as part of an overall software application when connections are documented in the
Application’s SAD XML file.

The getPort implementation returns a CORBA::Object pointer to the component where the behavior
associated with the specified port is implemented. The instructions which receive this pointer may
need to narrow it to a pointer to an appropriate interface, so often the pointer is generate through use
of an Interface::_this() call, where Interface is the appropriate IDL interface.

SCA Developer’s Guide Rev 1.1

Raytheon Page 15 of 78

2.5.5 PropertySet
The PropertySet interface, depicted in Figure 2.5-6, provides a means of accessing attributes of a specific
object.

Properties
<<CORBATypedef>>

PropertySet

configure(configProperties : in Properties) : void
query(configProperties : inout Properties) : void

<<Interface>>

UnknownProperties
invalidProperties : Properties

<<CORBAException>>

Figure 2.5-6 PropertySet Interface UML

The PropertySet interface provides the following operations:

configure(configProperties : in Properties) : void
The configure operation provides a mechanism to set the current values of configuration parameters
identified within the Property XML file of a Resource object. In a typical application, changing
configuration parameters is a mean of affecting operating characteristics of the component. The
configure operation of a Resource component may be called by any external CF client.

When the Core Framework creates Resources as part of an Application instantiation, the CF
Application implementation is required by the SCA to delegate all configure requests to the Assembly
Controller Resource of the Application. The implementation of an Assembly Controller may in turn
delegate requests to other Resources within the Application. When the Application developer needs to
have external capability of configuring or querying other Application Resources (besides the
Assembly Controller) those Resources may be provided as “ports” by the Assembly Controller. In
this case, the ports for the other Resources will show up in the SAD externalports element.

This operation is also invoked by an ApplicationFactory implementation following the initialization
(initialize method) of a newly created Resource object during the Application create process. The
ApplicationFactory implementation establishes the preliminary settings for the recently created object
based upon those configuration parameters established within the Property XML file of the Resource.

query(configProperties : inout Properties) : void
As a counterpart to configure, the query operation retrieves the current values of configuration
parameters identified within the Property XML file of a Resource object. The query operation of a
Resource component may be called by any external CF client. A CF Application implementation is
required by the SCA to delegate all query requests to the Assembly Controller Resource of the
Application. However, any Application Resource component may receive a query if the Assembly
Controller Resource delegates the query to it.

SCA Developer’s Guide Rev 1.1

Raytheon Page 16 of 78

2.5.6 Resource
The Resource interface (depicted in Figure 2.5-7) provides a common API for the control and configuration
of a software component. The Resource interface inherits the LifeCycle, PropertySet, TestableObject, and
PortSupplier interfaces. The Resource interface may be inherited by other application interfaces as
described in the Software Profile's Software Component Descriptor (SCD) file.

An Application is comprised of one to many components. A component can realize the Resource Interface,
in which case, the interface provides a common method of configuring, querying, etc. the component.

Figure 2.5-7 Resource CORBA Interface UML

The SCA includes requirements specifying when certain operations may be performed. Although the SCA
itself provides no terminology to label these situations, application developers commonly label them by
distinguishing between IDLE state (when only configure, query, and start may be performed) and
OPERATIONAL state (when any operation may be performed). Actual enforcement of the " IDLE state"
limitations is left to the developer. Often this is accomplished by spawning a special class that realizes only
configure, query, and start behavior (or by having each function base its behavior upon an attribute that
denotes the current state).

The Resource interface provides the following operations:

start() : void
The start operation is used to move a created Resource to OPERATIONAL state from IDLE state.
The start operation may be called by any external CF client.

stop() : void
The stop operation is used to move a created Resource to IDLE state from OPERATIONAL state.
The stop operation may be called by any external CF client.

Resource
identifier : string

start() : void
stop() : void

<<Interface>>

inherits
from

LifeCycle

initialize()
releaseObject()

<<Interface>>
PropertySet

configure()
query()

<<Interface>>

TestableObject

runTest()

<<Interface>>
PortSupplier

getPort()

<<Interface>>

ErrorNumberType
<<CORBAEnum>>

SCA Developer’s Guide Rev 1.1

Raytheon Page 17 of 78

2.5.7 ResourceFactory
A ResourceFactory may be used to create and tear down a Resource. The ResourceFactory interface is
designed after Factory Design Patterns. The ResourceFactory interface UML is depicted in Figure 2.5-8
The ResourceFactory interface provides a standard API for obtaining, creating, and destroying Resources
within an Application. If a Resource within an Application needs to be executed multiple times, the
ResourceFactory interface could be used in the Application developer’s design and implementation.

ResourceFactory
identifier : string

createResource(resourceId : in string, qualifiers : in Properties) : Resource
releaseResource(resourceId : in string) : void
shutdown() : void

<<Interface>>

Resource
<<Interface>>

Properties
<<CORBATypedef>>

ErrorNumberType
<<CORBAEnum>>

Figure 2.5-8 ResourceFactory CORBA Interface UML

The ResourceFactory interface provides the following operations:

createResource() : Resource
If a Resource with the specified resourceId does not exist, the createResource operation creates the
Resource with a reference count4 of 1 and returns a reference to that Resource. If a Resource with the
specified resourceId does exist already, the createResource operation increments the Resource's
reference count by 1 and returns a reference to the Resource.

releaseResource() : void
The releaseResource operation decrements the Resource's reference count; if the reference count now
equals zero, the operation then releases the Resource from the CORBA environment. In any case, the
client has responsibility to release its reference to the Resource.

shutdown() : void
The shutdown operation terminates the ResourceFactory implementation on the server side.
The client has responsibility to release its reference to the ResourceFactory.

The ResourceFactory interface is an optional interface that can be used by an application developer.
In the most common case, a ResourceFactory is not provided within an Application, so the Core
Framework's ApplicationFactory implementation is used to construct the application.

4 reference count keeps track of how many clients are using the server-side entity.

SCA Developer’s Guide Rev 1.1

Raytheon Page 18 of 78

2.6 Service Interfaces

2.6.1 Naming Service
The OMG Naming Service is one of CORBA’s standardized services. It provides a mapping from names
to object references: given a name, the service returns an object reference stored under that name. This is
similar to the Internet Domain Name Service (DNS), which translates an Internet domain name (such as
acme.com) into an IP address (such as 234.234.234.234)5.

The Naming Service provides a number of advantages to clients (a client of the Naming Service):

?? Clients can use significant names for objects instead of dealing with stringified object references.
?? By changing the value of a reference advertised under a name, you can get clients to use a different

implementation of an interface without having to change source code. The clients use the same name
but get a different reference.

?? The Naming Service can be used to solve the problem of how application components get access to the
initial references for an application. Advertising their references in the Naming Service eliminates the
need to store them as stringified references in files.

The Naming Service maps names to object references. A name-to-reference association is called a name
binding. The same object reference can be stored several times under different names, but each name
identifies exactly one reference. A naming context is an object that stores name bindings.

A hierarchy of contexts and bindings is known as a naming graph. In the graph below (Figure 2.6-1),
hollow nodes are naming contexts and solid nodes are application objects. Within a particular context,
name bindings are unique (each binding can appear only once within its parent context). The sequence of
bindings used in the traversal forms a pathname that uniquely identifies the target object. The same name
binding can appear multiple times provided that each binding is in a different parent context. A single
object or context can have multiple names. It is possible for the graph to have contexts that have no names.
Such contexts are known as orphaned contexts.

= Context

= Object

= Object Reference

DomainName

Application1 Application2

DomainManager

App1Resource1 App1Resource2 App2Resource1
Factory

App2Resource2

= Optional Contexts

Figure 2.6-1 Naming Graph

5 “Advanced CORBA Programming With C++” (Addison-Wesley Professional Computing) Henning &
Vinoski p772

SCA Developer’s Guide Rev 1.1

Raytheon Page 19 of 78

Because of critical size and tight processing requirements, it is difficult to incorporate a full-featured OMG
Naming Service into a real-time embedded application domain, such as a JTRS radio. The requirements of
these types of systems differ vastly from other general-purpose transaction-based CORBA applications.
Removing interfaces and methods not required for the embedded real-time environment would allow
Naming Service functionality to be more economically sized. The SCA Naming Service is a ‘lightweight’
version of the OMG Interoperable Naming Service. When there were two methods for accomplishing a
required task, one method was supported, and the other dropped. The OMG Naming Service List and
BindingIterator interfaces were omitted, since they were deemed as being unnecessary for most embedded
domain use. The following list summarizes the required interfaces supported by an SCA Naming Service:

?? The bind Interface
?? The bind_new_context Interface
?? The resolve Interface
?? The unbind Interface
?? The Destroy Interface

The following OMG Naming Service interfaces are not supported in the SCA’s Naming Service definition
and should not be used:

?? The rebind Interface
?? The rebind_context Interface
?? The bind_context Interface
?? The new_context Interface
?? The list Interface
?? The BindingIterator Interface

2.6.1.1 Use of Naming Service
All components managed by a particular DomainManager must use the same Naming Service, but that
Naming Service can be located on any processor that is accessible to the components. If the Naming
Service and other facilities provided by the ORB vendor conform to the OMG standard, then calling an
ORB’s resolve_initial_reference operation will obtain a connection to the Naming Service. Proprietary
methods may be available for connecting to the Naming Service, but these methods do not meet SCA
requirements.

In general, an object that wishes to ‘publicize’ its object reference registers with the Naming Service.
Within a JTRS system, the SCA requires the CF DomainManager and Application (waveform) Resources
to publicize their respective IORs in the Naming Service. No other JTRS component (CF or waveform) is
required to store its IOR on the Naming Service.

A Naming Service’s NameComponent structure is used to identify a context or an object’s IOR binding to a
context. A Naming Service’s NameComponent structure is made up of an id-and-kind pair. For JTRS, the
SCA requires the “id” element of each NameComponent to be a string value that uniquely identifies a
NameComponent and the “kind” element of the NameComponent be “” string (null string).

During component construction, the DomainManager creates a "naming context" under the root Naming
Service context using "/DomainName" as its name.ID component and "" (Null string) as its name.kind
component. It then creates a "name binding" to the "/DomainName" naming context using
"/DomainManager" as its name.ID component, "" (Null string) as its name.kind component, and the
DomainManager's object reference.
.
For a waveform Resource, the context to which the Resource is required to bind its object reference is
dictated by the CF ApplicationFactory. During the initial execution of a waveform, the ApplicationFactory
create operation passes mandatory execute-parameters to a Resource’s entry point. A Naming Context
IOR, a Name Binding, and the identifier for the Resource (in the form of CF::Properties) are passed to the

SCA Developer’s Guide Rev 1.1

Raytheon Page 20 of 78

entry point of the Resource components to be executed via a Device’s execute operation. For the Naming
Context IOR parameter the CF::Properties ID element is set to the string of "NAMING_CONTEXT_IOR"
and the CF::Properties value element is set to the stringified IOR of a naming context to which the
component will bind its IOR. The create operation creates the naming contexts to which the component
will bind its IOR. For the Name Binding parameter, the CF Properties ID element is set to the string of
"NAME_BINDING" and CF Properties value element set to a string in the format of
"ComponentName_UniqueIdentifier". The ComponentName value is the SAD componentinstantiation
findcomponent namingservice element’s name attribute. The UniqueIdentifier is determined by the
implementation of the ApplicationFactory. The Name Binding parameter is used by the component in the
naming structure when binding its object reference to the Naming Context IOR parameter.

The process is reversed, and the component's name and reference are remo ved from the Naming Service's
Naming Graph by the CF ApplicationFactory implementation, when the application is torn down.

The ApplicationFactory implementation performs these steps when it creates an application, so the
waveform developer need be concerned with them only if the ApplicationFactory implementation is not
used to build the waveform.

Figure 2.6-1 depicts an example listing from a JTRS utilizing the Naming Service. Optional application
(waveform) context objects may be listed under the Domain context.

2.6.2 Log Service
A JTRS Log Service stores log records written to it. The stored log records can be retrieved and deleted
from a Log. There can be any number of Log Services in a JTRS system. A log producer is a CF
component6 or an application’s CORBA capable component7 that enters records into a Log by calling the
writeRecords operation of the Log interface.

A CF component or application component can write log records (e.g., messages) to a Log Service for
storage. The stored log records can be retrieved as fault history, event history, general application
messages, etc. There is no requirement that an application component write log records, but the Log
Service does provide a standard mechanism if logging is desired.

A standard record type is defined for all log producers to use when writing log records. The log producer
may be configured via the PropertySet interface to output log records only for specific log levels. Log
producers implement a configure property with an ID of “PRODUCER_LOG_ LEVEL”. The
PRODUCER_LOG_LEVEL configure property provides the ability to “filter” the log message output of a
log producer. This property is of type LogLevelSequence. The configure property LogLevelSequence
contains all log levels that are enabled. On ly messages containing an enabled log level are sent by a log
producer to a Log. Log levels that are not in the LogLevelSequence are disabled.

2.6.2.1 Use of Log Service
The LogService module contains the Log interface and the types necessary for a log producer to generate
standard SCA log records. This module also defines the types necessary to control the logging output of a
log producer. An SCA Log Service, as specified in this section, may be provided in a JTRS installation.
The optional aspect of the Log Service is restricted to its deployment. A JTRS installation (e.g., a handheld
platform with limited resources) may choose not to deploy a Log Service as part of its domain. Several CF
components contain requirements to write log records using the Log Service. CF components and
applications that are required to write log records are also required to account for the absence of a Log
service and otherwise operate normally.

6 e.g., DomainManager, Application, ApplicationFactory, DeviceManager, or Device
7 e.g., Resource, ResourceFactory

SCA Developer’s Guide Rev 1.1

Raytheon Page 21 of 78

Once a Log Service has been registered with the DomainManager, the Log Service can then be used by
components in the system. Log Services are registered with the DomainManager by type (i.e. Log) and
name (e.g. Security, Failure Log). For waveform applications, the DomainManager utilizes the XML
connections element of the Application’s Software Assembly Descriptor (SAD). The connection element
documents uses and provides ports to be connected together. The connection of a component to a Log is
established using this method. A SAD file connection / providesport / findby / domainfinder XML can
contain attributes of type = “Log” and name = “Test”. The DomainManager would connect the Log named
Test to the component using the getPort / connectPort mechanism. If the name attribute is not supplied in
the XML, a null reference is provided to the Resource component. If the requested Log is not registered in
the system the DomainManager keeps the requesting pending and is required to perform the connection
when the appropriate Log Service registers.

Log Service connections to Devices are established in the same manner as connections to application
(waveform) Resources. When a DeviceManager or Device registers with the DomainManager the
DomainManager performs the connections documented in the DeviceManager’s Device Configuration
Descriptor (DCD) file. The DCD XML connections element is used is the identical manner as in an
Application’s SAD file.

The Log Service connections for the DomainManager are documented in the DomainManager’s XML
Configuration Descriptor (DMCD) file. The DMCD file contains the XML service / findby elements
which dictate the type and name of the Log Service to utilize for logging. The DomainManager is required
to log to the Log Service(s) dictated by the DMCD file.

This method of connecting ports of a Resource to a service is identical for the connection of both the Event
and Log Service. Section 2.6.3.1, Use of Event Service, provides sample XML depicting the XML for
describing the connection of a service to a CF component or Resource component.

2.6.3 CORBA Event Service
The OMG Event Service allows applications to use a de-coupled communications model rather than strict
client-to-server synchronous request invocations. With synchronous requests, a client actively invokes
requests on passive servers - After sending a request, the client blocks waiting for the response. Clients are
aware of the destinations of requests because they hold object references to the target objects, and each
request has a single destination denoted by the object reference used to invoke it. The OMG Event Service
allows suppliers to send messages to one or more consumers with a single call. In fact, suppliers using an
implementation of the Event Service need not be aware of any of the consumers of its messages; the Event
Service implementation also shields suppliers from exceptions resulting from any of the consumer objects
being unreachable or poorly behaved.

In the OMG Event Service Model, suppliers produce events and consumers receive them. Both suppliers
and consumers connect to an event channel, which conveys events from suppliers to consumers without
requiring suppliers to know about consumers or vice versa. Event channels play a central role in an Event
Service. They are responsible for supplier and consumer registration, timely and reliable event delivery to
all registered consumers, and the handling of errors associated with unresponsive consumers.

The OMG Event Service provides two models for event delivery: the push model and the pull model. The
SCA, however, only uses the push model. With the push model, suppliers push events to the event channel,
and the event channel pushes events to consumers. Figure 2.6-2 illustrates the push style of event delivery.
Note that the arrows indicate the client and server roles and point from client to server.

SCA Developer’s Guide Rev 1.1

Raytheon Page 22 of 78

Figure 2.6-2 OMG Event Service – Event Channel Models8

2.6.3.1 Use of Event Service
A CF implementation is required to provide two standard event channels: Incoming Domain Management
and Outgoing Domain Management. The standardized name of the Incoming Domain Management
Channel is "IDM_Channel”. The Incoming Domain Management event channel is used by components
(e.g., Device state change event) within the domain to generate events that are consumed by domain
management components (e.g., ApplicationFactory, Application, DomainManager, etc.) The standardized
name of the Outgoing Domain Management Channel is "ODM_Channel". Domain clients (e.g., HCI) use
the Outgoing Domain Management Channel to receive Domain Management events generated from
domain management components (e.g., ApplicationFactory, Application , DomainManager, etc.).
The DomainManager creates the standard event channels upon startup.

Besides these two standard event channels, the OE allows other event channels to be set up for Application
usage. An event channel provides an asynchronous transfer of data between components. It is not
recommended that an event channel be used for real-time transfers; instead, it is recommended that a
specific waveform API be used for real-time activity. Event channels are intended for non real-time
messages and are best used when developing a specific API would be impractical.

The definition of a nonstandard event channel is accomplished through an Application’s Software
Assembly Descriptor (SAD) file (Section 4.4). An Application’s SAD file can contain a domainfinder
element within a connection element specifying the interconnection of a component (e.g., Resource) to a
service. The domainfinder element is a child element of the findby element. The domainfinder element is
used to indicate to the CF ApplicationFactory implementation the necessary information to find an object
reference that is of specific type and may also be known by an optional name within the domain. The type
attribute value of “eventchannel” is used to specify the event channel to be used in the CF Event Service for
producing or consuming events. If the name attribute is supplied, but the name is not one of the standard
event channel names (IDM_CHANNEL or ODM_CHANNEL) and the type attribute has a value of
“eventchannel”, then the CF ApplicationFactory implementation will create the specified channel. If the
name attribute is not supplied and the type attribute has a value of “eventchannel” then the Incoming
Domain Management event channel is used. This method of connection ports of a Resource to a Service is
identical for the connection to both the Event and Log Service.

Figure 2.6-3 illustrates the event channel flow between producer and consumer. One concept this figure
shows is that a consumer must supply its provides object reference to a producer so that it may consume
what the producer provides.

8 “Advanced CORBA Programming With C++” (Addison-Wesley Professional Computing) Henning &
Vinoski p931

SCA Developer’s Guide Rev 1.1

Raytheon Page 23 of 78

Consumer
Component

XYZ Event
Channel

Producer
Component

0 .. n 0 .. n 0 .. n 0 .. n

event
consumer

Application Application

event
consumer

event
producer

event
producer

Event Channels
serves dual role -
producer/consumer

provides
port

uses
port

provides
port

uses
port

has
 a

connection to
consumer has a has

 a

connection to
consumer has a

1 2

XML for Consumer Component (1) XML for Producer Component (2)

<connections>

 <connectinterface>

 <usesport>

 <usesidentifier>
 event_channel_consumer_port_that_can_be_any_name
 </usesidentifier>

 <findby>
 <domainfinder
 type="eventchannel"
 name="XYZ"/>
 </findby>

 </usesport>

 <providesport>

 <usesidentifier>consumer_event_in_port</usesidentifier>
 <componentinstantiationref
 refid="consumer_component"/>

 </providesport>

 </connectinterface>

<connections>

<connections>

 <connectinterface>

 <usesport>

 <usesidentifier>
 producer_event_out_port
 </usesidentifier>

 <componentinstantiationref
 refid="producer_component"/>

 </usesport>

 <providesport>
 <findby>
 <domainfinder
 type="eventchannel"
 name="XYZ"/>
 </findby>
 <providesport>

 </connectinterface>

<connections>

Figure 2.6-3 Event Channel Flow between Producer & Consumer Components

SCA Developer’s Guide Rev 1.1

Raytheon Page 24 of 78

3 Application Program Interface (API) Overview
The API Supplement to the SCA defines structures to simplify the construction of portable SCA
applications. Organized similarly to the OSI, each API contains related functionality as is shown in Figure
3-1. Each API contains "A" interfaces (data and real-time control carried by the data stream) and "B"
interfaces (non-real-time control from the User Interface (UI), other layers, and other applications).

If an API is designed for a device, it includes interface CF::Device; otherwise it includes interface
CF::Resource9. The API Supplement provides for all other interfaces needed by an SCA-compliant
component.

A data / real-time control connection is labeled as being either "downstream" (moving messages towards
the modem) or "upstream" (moving messages from the modem).

Each API is divided into small closely related partitions, called "Service Groups", allowing a designer to
use just those portions that are needed for a particular application. A concrete Service Group is a complete
class. A generic Service Group, also known as a "Building Block", is a template class for which one, or
more, parameters must be replaced by a particular type in order to create a concrete class specific to the
application. The process of associating an actual type with the parameter is known as "binding", and the
process of creating a concrete class from a template class is known as " instantiating"10. A unified
interface structure can be created by bringing together specific Service Groups as needed - the desired
unifying class inherits from all relevant classes, so it contains all attributes and operations contained in
those classes.

9 See Section 3.2.2.1 and Figure 3-3 of the API Supplement.
10 This is another example of terminology overloading, since this use of "instantiating" to mean "create a
concrete class from a template class" is easily confused with the more common use of "create an object of a
particular class".

Figure 3-1 Organization of APIs

SCA Developer’s Guide Rev 1.1

Raytheon Page 25 of 78

The interfaces between two layers are defined by the lower layer.11 Both directions must be defined -
one interface for messages moving downstream12, and one interface for messages moving upstream13.
For example, the interfaces between the Physical and MAC layers are defined by the Physical layer.
The downstream ("provider") interface is implemented by the Physical layer and is invoked by the MAC
layer, and the upstream ("user") interface is implemented by the MAC layer and is invoked by the Physical
layer.

3.1 Generic Packets
Generic Packets is a collection of Building Blocks (BB). As is implied by the name, these are generic
classes that are used to define packet structure for any real-time interface. These classes/BuildingBlocks
are tailored to handle any type of data, since type of data is a parameter used when binding the template
class to create a concrete class. This grouping is comprised of the following Building Blocks:
?? SimplePacketBB - data transfer only
?? PacketBB - data transfer with Quality-of -Service and flow-control
?? ErrorSignalBB - asynchronous error notification
?? SignalsBB - notify when queue is empty or has reached high watermark or low watermark

3.2 Physical API
The Physical layer provides functionality directly related to operating a modem. In this particular case, the
API Supplement separates "A" Interface and "B" Interface services (see Figure 3-1 above).

3.2.1 Physical Real Time
Physical Real Time Service Groups contain types and operations relating to control information carried by
the data stream (actual packets are built from generic packets described in section 3.1). The following
Service Groups are contained in this group:
?? TransmitPackets - "instantiation" of SimplePacketBB or PacketBB with a data class corresponding to

the type of data actually received from the attached (MAC) layer.
?? ReceivePackets - "instantiation" of SimplePacketBB or PacketBB with a data class corresponding to

the type of data actually sent to the attached (MAC) layer.
?? ReceiveCommand - specifics of command are contained in actual type bound to the parameter

3.2.2 Physical Non-Real Time
Physical Non-Real Time Service Groups contain types and operations relating to control information
delivered apart from the datastream (typically from the UI). The following Service Groups are contained in
this group:
?? AntennaControlBB - controls which antenna(s) are connected to the transceiver
?? ModulationSetupBB - controls modulation/demodulation type {AM, FM,…} and settings
?? MediaSetupBB - controls setup needed for voice, data, etc.
?? TransceiverSetupBB - controls characteristics which are covered by neither MediaSetupBB nor

ModulationSetupBB
?? RadioModeBB - controls whether transceiver is off, operational, in setup mode, in test mode, etc.
?? ReceiveTerminationBB - used to terminate current reception and determine new status
?? Transmit_Inhibit - causes transceiver to be silent
?? PhysicalManagement - sets maximum and minimum Transmission Units

11 See Figure 3-3 (page 3-7) of the API Supplement for an illustration of this rule.
12 The API Supplement calls this the "Provider Interface"
13 The API Supplement calls this the "User Interface"

SCA Developer’s Guide Rev 1.1

Raytheon Page 26 of 78

3.3 Medium Access Control (MAC) API
The MAC layer, which is responsible for configuring the elements that move data between applications,
consists of the following Service Groups:
?? MACCommonUtilityBB - generalized methods needed by more than one MAC Building Block;

one common use of this Building Block would be to provide preset channel and/or power levels
?? TRANSECBB - non-Type 1 TRANSEC operations
?? ChannelErrorControlBB - attempts to maintain integrity of message over the physical channel (error

correction is an example of what could be provided by this Building Block)
?? ChannelAccessBB - channel access includes sync, end-of-message, and TDMA/CSMA/DAMA/etc
?? MACAddressBB - allows user to define address at MAC level
?? DropCaptureBB - facilitates returning to search state
?? QOSBB - allows user to access channel quality of service information when MAC calculates this
?? TransmitPackets - similar to corresponding Service Group in the Physical layer14
?? ReceivePackets - similar to corresponding Service Group in the Physical layer14

3.4 Logical Link Control API
The LLC layer provides three levels of service between end-points:

1. Connectionless service is a datagram service which

a. notifies the sender if an error is detected
b. provides flowcontrol between the end-points

2. Acknowledged Connectionless service is a datagram service which, in addition to services provided by

connectionless service
a. provides acknowledgements so that sender can verify arrival of a message
b. delivers packets in the same order in which they were sent

3. Connection-mode service is not yet defined. When fully specified, this service will create a virtual

circuit that provides convenient delivery between the end-points, including a "moving window" to
enable one reply to acknowledge a group of messages.

The LLC layer currently consists of the following Service Groups:
?? LocalManagement - apply to both connectionless and connection-mode services
?? Connectionless Mode Data Transfer - applies to connectionless service only
?? Acknowledged Connectionless Mode Data Transfer - applies to acknowledged connectionless service

only

3.5 I/O API
The I/O layer, which establishes the means of communicating with a specific type of I/O device, consists of
the following Service Groups:
?? IOConfigurationBB - provides means of configuring specific I/O device
?? IOControlBB - provides means of controlling specific I/O device during operation
?? IOSignals - provides means for device to signal "downstream" component
?? Audible Alerts And Alarms - provides means to define audible signal as a sequence of single tones

(resulting sound could be as complex as a siren, for example)

14 These Service Groups are not explicitly included in the "Cross-Reference of Services and Primitives"
table for the MAC layer, but the accompanying text clearly indicates that they are included in MAC layer.

SCA Developer’s Guide Rev 1.1

Raytheon Page 27 of 78

4 Domain Profile Components

The hardware devices and software components that make up an SCA system domain are described by a set
of XML descriptor files that are collectively referred to as a Domain Profile. This section provides a high-
level overview of each profile, emphasizing the purpose of each. This section will not go into detail on the
various DTD elements for each profile – That type of detail can be found in Appendix D of the SCA.
Figure 4-1 depicts the relationships between the various descriptor files used to describe a system's
hardware and software assets. This section, however, only focuses on the descriptor files essential to an
Application developer (Outlined in red in Figure 4-1) - These include the Software Package, Properties,
Software Component, Software Assembly, and Profile descriptor files. The profiles applicable to a device
developer (outlined in green in Figure 4-1) are discussed in section 7, Device Creation. A Software Profile
is either a Software Assembly Descriptor (for applications) or a Software Package Descriptor (for all other
software components and hardware devices). These descriptor files describe the identity, capabilities,
properties, and inter-dependencies of the hardware devices and software components that make up the
system. All of the descriptive data about a system is expressed in the XML vocabulary. This section
includes a UML diagram of each root-element defined in the specified profile, along with some guidance
on how to use the specified profile.

Device Package Descriptor
<<DTDElement>>

Profile Descriptor
<<DTDElement>>

Properties Descriptor
<<DTDElement>>0..n0..n

Software Component Descriptor
<<DTDElement>>

0..n0..n

Software Assembly Descriptor
<<DTDElement>>

11

Domain Profile

0..n0..n

Software Package Descriptor
<<DTDElement>>

11

0..n0..n

0..10..1

1..n1..n

Device Configuration Descriptor
<<DTDElement>>

0..n0..n

0..n0..n

1..n1..n

DomainManager
Configuration Descriptor

11

11
Profile Descriptor
<<DTDElement>>

11
11

green red

Figure 4-1 Domain Profile Descriptor File Relationships

SCA Developer’s Guide Rev 1.1

Raytheon Page 28 of 78

4.1 Software Package Descriptor
The SCA Software Package Descriptor (SPD) is used at deployment time to load and/or execute an SCA
compliant component. The information contained in the SPD provides the basis for the Domain
Management function to manage the component within the SCA architecture.

The SPD may contain various deployment implementations of any given component. Within the
specification of an SPD, several other files are referenced including a component-level propertyfile and a
software component descriptor file.

The softpkg element defines an SPD. The softpkg id attribute uniquely identifies the package and is a DCE
UUID, as defined by the DCE UUID standard (adopted by CORBA). The DCE UUID format starts with
the characters "DCE:" and is followed by the printable form of the UUID, a colon, and a decimal minor
version number, for example: "DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1". The decimal minor
version number is optional. The version attribute specifies the version of the component. The name
attribute is a user-friendly label for the softpkg element. The type attribute indicates whether or not the
component implementation is SCA compliant. All files referenced by a Software Package are located in
the same directory as the SPD file or a directory that is relative to the directory where the SPD file is
located.

softpkg
id : ID
name : CDATA
type : (sca_compliant | sca_non_compliant) = sca_compliant
version : CDATA

<<DTDElement>>

propertyfile
type : CDATA

<<DTDElement>>

title
<<DTDElementPCDATA>>

author
<<DTDElement>>

description
<<DTDElementPCDATA>>

descriptor
name : CDATA

<<DTDElement>>

implementation
id : ID
aepcompliance : (aep_compliant | aep_non_compliant) = aep_compliant

<<DTDElement>>

usesdevice
id : ID
type : CDATA

<<DTDElement>>

softpkg_grp
(from softpkg)

<<DTDSequenceGroup>>

0..10..1
{4}

0..10..1
{1}

1..n1..n
{2}

0..10..1
{3}

0..10..1
{5}

1..n1..n
{6}

0..n0..n
{7}

Figure 4.1-1 softpkg Element Relationships

An SPD should be provided as part of the software documentation for an application or device
implementation. The SPD should contain all of the mandatory XML elements as well as many of the
optional elements. There should be one implementation element for each variant (processor, operating
system, etc) of the component. The propertyfile element of the SPD is optional but should be provided,

SCA Developer’s Guide Rev 1.1

Raytheon Page 29 of 78

because it provides the definition of properties elements common to all component implementations and
implementation-specific properties being deployed in accordance with the Software Package.
The usesdevice element is not required, because an application may not use a device; however, there should
be a usesdevice element for each device that is needed by the application.

4.2 Properties Descriptor
The Properties Descriptor file details component and device attribute settings. For purposes of the SCA,
properties files contain simple, simplesequence, test, struct or structsequence elements. These elements are
used to describe attributes of a component that are used for dependency checking.

The simple element is the property descriptor’s central element. It provides for the definition of a property,
which includes a unique id, type, name, and mode attributes. Also included in the simple element are the
value, units, and range sub-elements, which are provided as initial configuration or execute parameters of a
component.

simple
<<DTDElement>>

simplesequence
<<DTDElement>>

test
<<DTDElement>>

struct
<<DTDElement>>

structsequence
<<DTDElement>>

properties
<<DTDElement>>

properties_grp_grp
(from properties_grp)

<<DTDChoiceGroup>>

properties_grp
(from properties)

<<DTDSequenceGroup>>

1..n1..n
{2}

description
<<DTDElementPCDATA>>

0..10..1
{1}

Figure 4.2-1 properties Element Relationships

A properties file should be provided as part of the software documentation for an application or device
implementation. The properties file should not exclude any element.

The description element of the properties file is optional but should be provided. The description element
can be used to provide text information about how the properties file is used and what is meant by each of
the properties.

The properties file should include a properties element for each attribute used in the the configure() and
query() operations for SCA CF Resource components, for each attribute used for dependency checking,
and for each attribute used in the CF TestableObject runTest() operation to configure tests and provide test
results.

SCA Developer’s Guide Rev 1.1

Raytheon Page 30 of 78

4.3 Software Component Descriptor
The Software Component Descriptor (SCD) describes a component with respect to the interfaces that it
inherits from, the interfaces the component supports, and lists its provides and uses ports. The supported
interfaces are those distinct interfaces that were inherited by the component’s specific interface. The
specified port names (uses and provides) can be used in the Software Assembly Descriptor to connect the
component ports to other components.

softwarecomponent
<<DTDElement>>

corbaversion
<<DTDElementPCDATA>>

componentrepid
repid : CDATA

<<DTDElementEMPTY>>
componenttype

<<DTDElementPCDATA>>
componentfeatures
<<DTDElement>>

interfaces
<<DTDElement>>

softwarecomponent_grp
(from softwarecomponent)

<<DTDSequenceGroup>>

{1}

{2} {3} {4} {5}

propertyfile
type : CDATA

<<DTDElement>>0..10..1
{6}

Figure 4.3-1 softwarecomponent Element Relationships

An SCD should be provided as part of the software documentation for an application or device
implementation. The SCD should contain each of the following:

?? corbaversion – indicates which version of CORBA the component is developed for

?? componentrepid – the repository id of the component

?? componenttype – identifies the type of software component object
 { resource / resourcefactory / device }

?? componentfeatures – describes each supported message port for the component

?? interface – describes the component unique id and name for each supported interface

SCA Developer’s Guide Rev 1.1

Raytheon Page 31 of 78

4.4 Software Assembly Descriptor
This section describes the XML elements of the Software Assembly Descriptor (SAD) XML file. The
softwareassembly element is the root element of the software assembly descriptor file. The SAD is based
on the CORBA Components Specification Component Assembly Descriptor. The intent of the software
assembly is to provide the means of describing the assembled functional application and the
interconnection characteristics of the SCA components within that application. The component assembly
provides four basic types of application information for Domain Management. The first is partitioning
information that indicates special requirements for collocation of components, the second is the assembly
controller for the software assembly, the third is connection information for the various components that
make up the application assembly, and the fourth is the visible ports for the application assembly.

{1}

softwareassembly
id : ID
name : CDATA

<<DTDElement>>

assemblycontroller
<<DTDElement>>

externalports
<<DTDElement>>

description
<<DTDElementPCDATA>>

componentfiles
<<DTDElement>>

partitioning
<<DTDElement>>

softwareassembly_grp
(from softwareassembly)

<<DTDSequenceGroup>>

{4}

0..10..1
{6}0..10..1

{2} {3}

connections
<<DTDElement>>

0..10..1
{5}

Figure 4.4-1 softwareassembly Element Relationships

An SAD should be provided as part of the software documentation for an application implementation.
The SAD should contain all of the mandatory XML elements as well as most of the optional elements.
The description element of the SAD is optional but should be provided., because it can be used to provide
text information about the application implementation. The connections element is not required, because
some application may not have any connections; however, there must be a connections element if the CF
ApplicationFactory implementation needs to connect components together. Likewise, the externalports
element identifies any port which might be the subject of a getPorts query from outside the application
(from a GUI, for example); thus there should be an externalports element for any port which might be
requested by external entity.

Installing an application into the system consists of installing a SAD file. The SAD file references
component’s SPD files to obtain deployment information for these components. The softwareassembly
element’s id attribute is a DCE UUID, as specified in section 4.1, which uniquely identifies the assembly.
The softwareassembly element’s name attribute is the user-friendly name for the CF ApplicationFactory
name attribute.

SCA Developer’s Guide Rev 1.1

Raytheon Page 32 of 78

4.5 Profile Descriptor
The profile element can be used to specify the absolute profile file pathname relative to a mounted CF
FileSystem. The filename attribute is the absolute pathname relative to a mounted FileSystem. This
filename can also be used to access any other local file elements in the profile. The type attribute indicates
the type of profile being referenced. The valid type attribute values are “SAD”, “SPD”, “DCD”, and
“DMD”. This element can be given out for any CF interface (e.g., CF Application, CF Device, CF
ApplicationFactory, CF DeviceManager, CF DomainManager) that has profile attributes.

The format described by the profile descriptor XML can be used in the implementation of certain SCA
interface attributes. The attributes that utilize the format d ictated by the profile descriptor XML are the
Application's softwareProfile, the DomainManager's domainManagerProfile, the DeviceManager's
deviceConfigurationProfile, and the Device's softwareProfile attribute. The profile descriptor XML is not
used in any delivered XML file.

SCA Developer’s Guide Rev 1.1

Raytheon Page 33 of 78

5 Design Progression
An interface defines the connection between a waveform component and another waveform component or
between a waveform component and an entity15 outside the waveform. CORBA prescribes an Interface
Definition Language (IDL) to define interfaces. Servant code provides the actual implementation for an
interface. Numerous design methodologies are available to develop an implementation based upon IDL.
This section discusses object-oriented procedures (using a software modeling tool). Following these
procedures will enable the developer to create implementation servant code when IDL provides the initial
definition.

5.1 IDL Modeling
CF interfaces are expressed in CORBA IDL. The SCA IDL has been generated directly by the Rational
Rose UML software-modeling tool. This “forward engineering” approach ensures that the IDL accurately
reflects the architecture definition as contained in the UML models. Any IDL compiler for the target
language of choice may compile the generated IDL.

CF

LifeCycle PropertySet

TestableObj
ect

PortFile FileManager FileSystem

Application

Resource ResourceFa
ctory

ApplicationF
actory

Device

DeviceMana
ger DomainMan

ager

LoadableDev
ice

Executable
Device

AggregateD
evice

PortSupplier

Figure 5.1-1 CF CORBA Module

Forward Engineering is the process of transforming a model into code through a mapping to an
implementation language. To forward engineer a class diagram,

?? Identify the mapping rules from UML to your implementation language(s) of choice
?? Depending on the semantics of the languages chosen, you may have to constrain the use of certain

UML features. For example, the UML permits modeling of multiple inheritance, but Smalltalk (for
example) permits only single inheritance.

?? Use tagged values to specify your target language. A tagged value extends the properties of a UML
building block, allowing the creation of new information in that element’s specification. You can do
this at the level of individual classes if you need precise control. You can also do so at a higher level,
such as with collaborations or packages. Collaborations represent the implementation of patterns that
make up a system.

15 for example, the UserInterface

SCA Developer’s Guide Rev 1.1

Raytheon Page 34 of 78

5.2 IDL Generation
At any point in the IDL design, the tool chosen to develop the UML model can be told to generate IDL.
The following is a code snippet of the CF IDL generated from such a tool.

//Source file: CF.idl

#ifndef __CF_DEFINED
#define __CF_DEFINED

/* CmIdentification
 %X% %Q% %Z% %W% */

/* This package provides the main framework for all objects within the
radio. */

module CF
{
 interface File;
 interface Resource;
 interface Application;
 interface Device;
 interface ApplicationFactory;
 interface DeviceManager;

 /* This type is a CORBA IDL struct type which can be used to hold
 any CORBA basic type or static IDL type. */

 struct DataType
 {
 /* The id attribute indicates the kind of value and type
 (e.g.,frequency, preset, etc.). The id can be an UUID string,
 an integer string, or a name identifier. */
 string id;

 /* The value attribute can be any static IDL type or CORBA basic
 type. */
 any value;
 };

 /* This exception indicates an invalid component profile error. */
 exception InvalidProfile
 {
 };

 /* The Properties is a CORBA IDL unbounded sequence of CF
 DataType(s), which can be used in defining a sequence of name and
 value pairs. */
 typedef sequence <DataType> Properties;

 /* This exception indicates an invalid CORBA reference error*/
 exception InvalidReference
 {
 string msg;
 };

SCA Developer’s Guide Rev 1.1

Raytheon Page 35 of 78

 /* This type is a CORBA unbounded sequence of octets. */
 typedef sequence <octet> OctetSequence;

 /* This type defines a sequence of strings */
 typedef sequence <string> StringSequence;

 /* This exception indicates a set of properties unknown by the
 component. */
 exception UnknownProperties
 {
 Properties invalidProperties;
 };

5.3 IDL Compilation
IDL must be translated into a high level language to be used in a development process. This translation is
accomplished with an IDL compiler. When invoked, these tools produce C++ (or Java or Ada, etc.) body
(.cpp) & specification (.h) files to be used for both the client-side (stub) and server-side (skeleton)
operation.

Figure 5.3-1 Development Process for Different Development Environments

The client code is specialized to perform client-oriented operations using a particular language and ORB.
The server code is specialized to perform server-oriented operations using a particular language and ORB.
Thus, the client code and the server code will tend to differ from each other and from the IDL. Each may
have unique pointer types, specialty functions, and class name variations.

SCA Developer’s Guide Rev 1.1

Raytheon Page 36 of 78

5.4 Client/Server Compilation
The IDL compilation outputs, at a minimum, a client-side (stub)code and server-side (skeleton) code.
Some IDL compilers also generate implementation templates for each of the interfaces found in the IDL.
However, for our discussions, we’ll assume the IDL compiler generates only a client and server (.cpp & .h).
The client and server files must then be compiled to ensure the code is syntactically correct.

The server code does not perform the tasks promised by the interface. Instead, it calls servant objects,
written by the implementer, to perform the tasks promised by the interface. The servant objects could be
based on implementation templates generated by the IDL compiler, or they could be designed using
standard object-oriented design methods. If the latter procedure is followed (using a software modeling
tool), the work of the implementer is made more efficient and more accurate if the tool contains a server-
side view of the interface based upon the actual server code.

The client code does not originate requests on the interface. Instead, tasks promised by the interface are
requested by a using object, and the client code relays these requests to the server code. If the person who
programs the using object designs it using a software modeling tool, this work is made more efficient and
more accurate if the tool contains a client-side view of the interface based upon the actual client code.

Reverse engineering of the client/server files is one means of automatically generating models of the
server-side view and the client-side view of the interface, thereby providing the reduction in development
effort described in the previous two paragraphs.

5.5 Reverse Engineering
Reverse Engineering is the process of transforming code into a model through a mapping from a specific
implementation language. Reverse engineering results in a flood of information, some of which is at a
lower level of detail than needed to build useful models. From source code, one can reverse engineer back
to classes – this is what is most commonly done. Reverse engineering the client and server files at this
point has several advantages: 1) the implementation classes can be kept updated as the design changes, and
2) The modeling tool typically provides features to generate source code from the model. The auto-
generation of source code can often provide significant reductions in the development phase. To reverse
engineer the client/server files,

?? Identify the rules for mapping from the implementation language(s) of choice
?? Point to the desired code to be reverse engineered, and generate a new model or modify an existing one

that was previously forward engineered.
?? Create a class diagram by querying the model. For example, one might start with one or more classes

then expand the diagram by following specific relationships or other neighboring classes.

SCA Developer’s Guide Rev 1.1

Raytheon Page 37 of 78

5.6 Creation of Servant Implementation Classes

Resource

ResourceServant

identifier : string

ResourceServant ()
getPort()
initialize()
releaseObject()
configure()
query()
runTest()
start()
stop()

“Inheritance
 Relationship”

Child Class

Attributes

Operations

Parent
Class

Figure 5.6-1 ResourceServant Inheritance

Assuming the IDL-generated client and servant files were reverse-engineered into the model tool, class
diagrams can then be created that depict the various implementation classes. Figure 5.6-1 shows the
ResourceServant class implementing the CF Resource interface. The Resource interface is the server-side
skeleton class generated by the IDL compiler. The ResourceServant class shown describes how the
developer plans to implement the Resource interface. In this case, the ResourceServant class has one
attribute and eight operations (not including the constructor). Once the servant design is entered into the
model, the tool can be instructed to generate source code. The term “inherit” simply means that attributes
at a higher class-level are common with all the subclasses. The “inherit” feature is shown by a hollow
arrow; the UML symbol for “generalization”.

SCA Developer’s Guide Rev 1.1

Raytheon Page 38 of 78

5.7 Servant Code Generation
Once the servant design (e.g. ResourceServant in Figure 5.6-1) is entered into the model, the tool can be
instructed to generate source code. This provides a template with which to begin the coding stage.
Typically, the generated code is placed in preservation sections (provided by the tool) that ensure that any
subsequent model updates, and therefore code generations, do not overwrite existing software (these
preservation sections are fairly common across code generation tools). This allows the model and
implementation to be kept in sync. The following is a code snippet of the ResourceServant.h file. Notice
the inheritance of the reverse-engineered class (in red - class ResourceServant : public
POA_CF::Resource). Also contained in the .h file is the prototype for all the operations shown in Figure
5.6-1.

//## begin module%37397F0C6910.cm preserve=no
// %X% %Q% %Z% %W%
//## end module%37397F0C6910.cm

#ifndef ResourceServant_h
#define ResourceServant_h 1

//## begin module%37397F0C6910.additionalIncludes preserve=no
//## end module%37397F0C6910.additionalIncludes

//## begin module%37397F0C6910.includes preserve=yes
//## end module%37397F0C6910.includes

// ResourceHelper
#include "ResourceHelper.h"
// LoggerPortServant
#include "LoggerPortServant.h"
// CFServer
#include "CFServer.h"

//## begin module%37397F0C6910.additionalDeclarations preserve=yes
#include "ConnectionServant.h"
//## end module%37397F0C6910.additionalDeclarations

//## begin ResourceServant%37397F0C6910.preface preserve=yes
//## end ResourceServant%37397F0C6910.preface

//## Class: ResourceServant%37397F0C6910
// This class implements the CF::Resource interface and provides common
// attributes and operations for a resource implementations
//
//## Category: Core CSCI Design Components::Abstract Channel Design
Components%3520FCED8D78; Global
//## Subsystem: Core CSCI Implementation Components::Abstract Channel Implementation
Components%3563352AFCB0
//## Persistence: Transient
//## Cardinality/Multiplicity: n

//## Uses: <unnamed>%37397F0CCD10;NameUtilities { -> }
//## Uses: <unnamed>%387C7D167000; { -> }

SCA Developer’s Guide Rev 1.1

Raytheon Page 39 of 78

class ResourceServant : public POA_CF::Resource //## Inherits: <unnamed>%3A9E60D9E1A8
{
 //## begin ResourceServant%37397F0C6910.initialDeclarations preserve=yes
 //## end ResourceServant%37397F0C6910.initialDeclarations

 public:
 //## Constructors (specified)
 //## Operation: ResourceServant%947682840
 ResourceServant (PortableServer::POA_ptr oe_poa, const char *name);

 //## Destructor (generated)
 virtual ~ResourceServant();

 //## Other Operations (specified)
 //## Operation: initialize%955649192; C++
 virtual void initialize (CORBA::Environment& _env) = 0;

 //## Operation: releaseObject%955649193; C++
 void releaseObject (CORBA::Environment& _env);

 //## Operation: query%955649194; C++
 virtual void query (CF::Properties& configProperties, CORBA::Environment& _env) = 0;

 //## Operation: configure%955649195; C++
 virtual void configure (const CF::Properties& configProperties, CORBA::Environment& _env);

 //## Operation: runTest%955649196; C++
 virtual CORBA::Long runTest (CORBA::ULong testNum, CORBA::Environment& _env) = 0;

 //## Operation: start%955649199; C++
 virtual void start (CORBA::Environment& _env) = 0;

 //## Operation: stop%955649200; C++
 virtual void stop (CORBA::Environment& _env) = 0;

 //## Operation: getPort%959702974; C++
 CORBA::Object* getPort (const CORBA::Char* name, CORBA::Environment& _env);

 // Additional Public Declarations
 //## begin ResourceServant%37397F0C6910.public preserve=yes
 //## end ResourceServant%37397F0C6910.public

};

//## begin ResourceServant%37397F0C6910.postscript preserve=yes
//## end ResourceServant%37397F0C6910.postscript

// Class ResourceServant

//## begin module%37397F0C6910.epilog preserve=yes
//## end module%37397F0C6910.epilog

#endif

SCA Developer’s Guide Rev 1.1

Raytheon Page 40 of 78

5.8 XML Generation
As was discussed in section 1.2, the SCA-defined DTDs define exactly what is allowed to appear inside an
XML document. Since those DTDs have already been created/validated (see Appendix D of the SCA), the
developer only needs to be concerned with the XML needed to define the application. Appendix A provides
guidance to those new to XML. Appendix D of this document contains the XML describing the fictitious
XYZ Application discussed in Section 6. Appendix E contains the XML describing the fictitious XYZ
device discussed in Section 7. Domain Profile files need to follow the format of the Document Type
Definitions (DTDs) provided in Appendix D of the SCA. DTD files are installed in the domain and need to
have “.dtd” as their filename extension. There are a number of commercial XML authoring tools that help
the developer concentrate on the content of the XML, and not on the s yntax and formatting issues.

6 Waveform Development

Implementing any SCA-compliant waveform software follows certain steps. As is indicated by notations in
the following list, some steps are discussed elsewhere in this guide, but the entire procedure is outlined here
as a checklist to assist the developer to ensure that no step is omitted.

1. Identify functionality to be provided by the waveform software { section 6.1.2 }

2. Determine which API Service Groups are needed { section 6.1.3 }

3. Determine what services are needed beyond the API Service Groups { section 6.1.4 }

4. Build UML model of interface { section 6.2 }

5. Generate IDL from UML model of interface { section 5.2 }

6. Translate IDL into language-appropriate implementation files { section 5.3 }

7. Compile code generated in step 6 { section 5.4 }

8. Reverse engineer UML model from language-specific implementation files { section 5.5 } (optional)

9. Build UML model of waveform software { section 6.3 }

10. Generate language-appropriate template files for servant and user software { section 5.7 }

11. Write servant and user software

12. Write XML for each component { section 5.8 }

13. Build User Interface { section 8 } (optional)

14. Integrate software and hardware

15. Test resultant application

6.1 Functional Allocation to API Design
The sections 6.1 - 6.3 discuss steps 1-4 and 9 in detail. For each step, a short discussion of the process is
followed by an example. This continuing example uses an imaginary waveform, called XYZ, to illustrate
the steps involved in implementing any waveform. The example steps assume that no existing API meets
the needs of waveform XYZ, so all new APIs are developed.

SCA Developer’s Guide Rev 1.1

Raytheon Page 41 of 78

6.1.1 Introduction
Section 3 of this guide describes the layered structure inherent in a design based upon the API Supplement.
Various organizations of components are possible within this general structure. A typical waveform
implementation might consist of the components shown in Figure 6.1-1:
?? Modem receives/transmits the actual signal.
?? Waveform provides main implementation of functionality based upon the SCA and API. It has ports

(usually one in each direction) to handle data flow with the application or device that is connected to it.
It must provide CF::Resource functionality (see Section 3), so a CF::Resource port is also shown.
The Core Framework's ApplicationFactory implementation is the only software that uses CF::Port, and
it already has access to the waveform application (obtained when it created the waveform), so CF::Port
is not shown on diagrams in this guide.

?? UI represents interface to user. This topic is discussed in general terms in sections 8.1 - 8.3, but often
this is a specialty of its own.

 Resource requests

 control/data to attached app/dev

 log

 control/data from attached app/dev

UI

Waveform

Modem

1

2

3

4

5

0

Figure 6.1-1 Typical Waveform Implementation

Since this document relates to the work of implementing a waveform application based upon the SCA
and API, it focuses upon the Waveform software; the other components are shaded in Figure 6.1-1.

SCA Developer’s Guide Rev 1.1

Raytheon Page 42 of 78

The ports are numbered 0…5 in Figure 6.1-1 to provide a convenient means of identifying a particular port
during discussions later in this guide.

The actual type of connection between the waveform software and the modem depends upon the actual
hardware used. Since this guide does not focus upon that connection, for reasons of simplicity it is shown
as a port (in particular, as port 4) in Figure 6.1-1.

A waveform application can be connected either to another application or to a device - the design of the
software is not affected by this choice. However, in order to simplify terminology, this guide assumes that
the waveform application is attached to a device.

6.1.2 Identifying Application Functionality
The waveform software must implement the CF::Resource and CF::Port interfaces.
Additional functionality required of the waveform software depends upon the messages that it exchanges
with other applications.

6.1.2.1 Data and Control from Attached Device
For the purposes of this guide, we assume that the waveform application receives the following messages
from the device that is attached to it:

a) Prepare to receive data (e.g., audio unit would send this for PTT {PushToTalk}).
b) information carried by the signal16

6.1.2.2 Data and Control to Attached Device
Similarly, the waveform application sends the following messages to the device that is attached to it:

a) prepare to receive data (normally this means "squelch has been broken")
b) information carried by the signal16

6.1.2.3 Control from User Interface (UI)
We assume that the waveform might receive the following commands from the UI:

a) set levels of AGC and noise squelch used to recognize the presence of a signal
b) set frequency to be used for receiving and sending
c) disable transmission (regardless of PTT activity)
d) set mode of operation (VOICE or DATA)
e) set speed of transmission when in DATA mode of operation
f) set power level of transmitter

.

16 Transmission between digitial radio components may be either digital data or analog ("voice") data that
has been converted into a digital form. In either case, the bits are packaged into a packet structure.
This information stream consists of a series of these packets.

SCA Developer’s Guide Rev 1.1

Raytheon Page 43 of 78

6.1.3 Functional API Mapping
Using Sections 3.1 through 3.4, an appropriate API primitive service should be identified, if possible, for
each API requirement listed in section 6.1.2. Identifying needed primitive services (operations)
automatically identifies the enclosing Service Groups as the classes needed for the waveform interface.

Table 6.1-1 shows a mapping for the XYZ waveform described in sections 6.1.2.1 - 6.1.2.3. This table
shows, for each requirement identified in sections 6.1.2.1-6.1.2.3, which service (contained within wh ich
Service Group) satisfies that requirement. Each waveform variable is implemented as a class attribute.
Thus, Table 6.1-1 shows these values being set from the UI by using the CF::Resource::configure operation
even though they could be set using various methods provided by the Physical API.
.

needed
functionality
{description}

waveform
port number

in
Figure 6.1-1

API Service Group
/

Class

primitive service
/

operation

note

6.1.2.1-a
{prepare to
receive data}

3

6.1.2.1-b
{data from app}

3 Physical
RT

SimplePacket
via
TransmitPacket

pushPacket instantiated with
PayloadType as octet or
other appropriate type

6.1.2.2-a
{prepare to
receive data}

2

6.1.2.2-b
{data to app}

2 Physical
RT

SimplePacket
via
TransmitPacket17

pushPacket instantiated with
PayloadType as octet or
other appropriate type

6.1.2.3-a
{squelch params}

1 configure

6.1.2.3-b
{frequency}

1 configure

6.1.2.3-c
{disable xmit}

1 Physical
NRT

Transmit_Inhibit inhibitTransmit boolean parameter enables
this operation to turn
transmission on or off as
needed

6.1.2.3-d
{voice/data mode}

1

6.1.2.3-e
{set data speed}

1 configure

6.1.2.3-f
{set xmit power}

1 configure

Table 6.1-1 Primitive Service for Each Requirement

17 The definitions (in the API Supplement) of TransmitPacket and ReceivePacket are identical except for
direction, and the API Supplement provides no further direct guidance. The API Supplement seems to
assume that data normally differs between the two directions (for example, received data might include
QOS information, but transmitted data never would). For the simple XYZ example used in this guide,
there is no difference in data between the two directions, so we derive just one concrete UML class to
handle data in both directions and label it "TransmitPacket" ("ReceivePacket" would have been equally
valid as a label for this class).

SCA Developer’s Guide Rev 1.1

Raytheon Page 44 of 78

The Service Group "TransmitPacket" could be instantiated in both the Physical layer and the MAC layer.
In order to emphasize that this particular instantiation is in the Physical layer, it is referred to as
"TransmitPacketPhys" for the remainder of this guide.

6.1.4 Mapping Remaining Needs
The APIs were selected to provide commonly needed services. However, a waveform may have needs
which were not anticipated in the API design. In that case, the waveform designer may
?? extend an existing Service Group
?? design an entirely new Service Group

The requirements for the simple XYZ waveform include requirements (e.g., the requirements represented
by grayed-out rows in Table 6.1-1) which do not have a good match in the APIs defined in the SCA API
Supplement or by a waveform procurement document. In Table 6.1-2, those requirements are met by
adding services to the model. In this case, the requirements are met by extending Service Group
"TransmitPacketPhys" (thereby creating "TransmitPacketPhys_XYZ") and creating new Service Group
"SetMode".

needed
functionality
{description}

waveform
port number

in
Figure 6.1-1

API Service Group
/

Class

primitive service
/

operation

note

6.1.2.1-a
{prepare to
receive data}

3 Physical
RT

extend
TransmitPacketPhys
to create
TransmitPacketPhys_XYZ

new
signalDetected

occurs each time status
changes -
boolean parameter
indicates whether signal is
currently present

6.1.2.1-b
{data from }

3 Physical
RT

SimplePacket
via
TransmitPacketPhys

pushPacket instantiated with
PayloadType as octet or
other appropriate type

6.1.2.2-a
{prepare to
receive data}

2 Physical
RT

extend
TransmitPacketPhys
to create
TransmitPacketPhys_XYZ

new
signalDetected

occurs each time status
changes -
boolean parameter
indicates whether signal is
currently present

6.1.2.2-b
{data to }

2 Physical
RT

SimplePacket
via
TransmitPacketPhys

pushPacket instantiated with
PayloadType as octet or
other appropriate type

6.1.2.3-a
{squelch params}

1 configure

6.1.2.3-b
{frequency}

1 configure

6.1.2.3-c
{disable xmit}

1 Physical
NRT

Transmit_Inhibit inhibitTransmit boolean parameter enables
this operation to turn
transmission on or off as
needed

6.1.2.3-d
{voice/data mode}

1 Physical
NRT

new
SetMode

new
setMode

parameter from enum
{ VOICE_MODE,
DATA_MODE }

6.1.2.3-e
{set data speed}

1 configure

6.1.2.3-f
{set xmit power}

1 configure

Table 6.1-2 Extending Service Group to Meet All Requirements

SCA Developer’s Guide Rev 1.1

Raytheon Page 45 of 78

6.2 Building API Layer Definitions

6.2.1 Introduction
A purpose in using Service Groups is to reduce analysis/design effort, since a basic Service Group is
developed just once. Once the appropriate Service Groups have been identified, the next step is to build
these Service Groups into a model that can be used to generate appropriate IDL. The API Supplement
provides precise procedures for constructing and using APIs. Assuming that the needed API does not exist
(according to the section 6.1 introduction to waveform XYZ, this assumption is true of XYZ), new
interfaces should be built using one of the methods summarized here:

1. A concrete Service Group is not changed, since it is a usable class already.

2. A generic Service Group must be instantiated to create a usable concrete class. In this situation,

instantiation consists of replacing the generic type(s) with type(s) needed for a particular waveform.
A type must be defined if it is not already defined.

3. If a Service Group is to be "extended", a new concrete class must inherit from an existing concrete

class. The extra attributes and/or operations needed by the waveform are placed into the new class.

4. A completely new class is constructed using usual methodology.

Options 2-4 create new concrete classes, which are used in implementing the waveform. They do not
reflect back on the API, but they must conform to API Supplement requirements by specifying interfaces,
behavior, state information and exceptions.18

The API Supplement specifies that scoped names should be used to ensure that each name is unique within
the system; that is, a separate mo dule is created for each waveform, and that module contains a separate
module for each API. Within this structure, additional packaging may be used to group together interfaces
that are realized by a given component and tend to be used together.

Once all building blocks are in the model, they may be combined19 so that the final design involves
inheritance from just a small number of classes.

6.2.2 Waveforms with Physical Layer
Table 6.1-2 shows that the simple XYZ waveform
requires Service Group TransmitPacket from
the Physical Real-Time API and Service Groups
SetMode and Transmit_Inhibit from the
Physical Non-Real-Time API.

 In order to simplify individual diagrams, each
instantiated building block is put into a separate
diagram, and a special diagram (called "XYZ_Phys")
is created to hold integrating classes. The other CORBA
modules (CF, PacketAPI, PhysicalNonRealTimeAPI,
and PhysicalRealTimeAPI) contain pre-existing
components which are being reused. The resulting
structure is shown in Figure 6.2-120.

18 See section 1.2.2 of the API Supplement.
19 For the purposes of this guide, we shall refer to classes created for this purpose as "integrating classes"
20 This example is taken from a Rational Rose implementation - other tool might use different
representation, but the essential structure would be the same.

Figure 6.2-1

Structuring UML Modules

SCA Developer’s Guide Rev 1.1

Raytheon Page 46 of 78

6.2.2.1 Using Concrete Service Group
Of the Service Groups used in the simple XYZ example, only Transmit_Inhibit uses an existing concrete
class. Figure 6.2-2 shows the UML for the pre -existing classTransmit_Inhibit.

6.2.2.2 Instantiating Generic Building Block
TransmitPacketPhys is based upon a template class. Class SimplePacket has parameters Payload_Type and
Control_Type, which must be replaced by actual types in order to create a concrete class.
Assuming that data is transmitted octet-by-octet, Payload_Type is replaced by OctetSequence, which is
defined within the module CF. Assuming that no control information accompanies individual messages,
an empty structure, "NullControlPhys", is created to replace Control_Type.

SimplePacket is instantiated by binding these replacements, resulting in new concrete class
TransmitPacketPhys.

Figure 6.2-3 uses UML notation to depict the relationships involved in creating class TransmitPacketPhys.

Transmit_Inhibit

inhibitTransmit()

(from PhysicalNonRealTimeAPI)

<<Interface>>

Figure 6.2-2 UML for Transmit_Inhibit

Control_Type
Payload_Type

SimplePacket

maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(control : in ControlType, payload : in PayloadType) : void

(from PacketAPI)

<<API Building Block>>

<<bind>>

TransmitPacketPhys

pushPacket(control : in NullControlPhys, payload : in CF::OctetSequence) : void

<<Interface>>

<<Uses>> <<Uses>>

OctetSequence
(from CF)

<<CORBATypedef>>NullControlPhys

dummy : char

<<CORBAStruct>>

Figure 6.2-3 UML for TransmitPacketPhys

SCA Developer’s Guide Rev 1.1

Raytheon Page 47 of 78

6.2.2.3 Extending A Service Group
Table 6.1-1 shows that instantiating class TransmitPacket is insufficient, because requirements 6.1.2.1-a
and 6.1.2.2-a remain unsatisfied. Table 6.1-2 provides one solution to this problem - we can create an
extended class that includes the operation signalDetected.

Figure 6.2-4 uses UML notation to depict the inherited relationships of the extended class
TransmitPacketPhys_XYZ.

In order to include additional functionality, TransmitPacketPhys_XYZ is created inheriting from the
concrete class TransmitPacketPhys. The newly-created operation signalDetected is defined in
TransmitPacketPhys_XYZ. Since TransmitPacketPhys_XYZ inherits from TransmitPacketPhys, it
includes the pushPacket operation.

TransmitPacketPhys

pushPacket(control : in NullControlPhys, payload : in CF::OctetSequence) : void

<<Interface>>

UserProvider_Physical_XYZ

signalDetected(signalPresent : in boolean) : void

<<Interface>>

NullControlPhys

dummy : char

<<CORBAStruct>>
<<Uses>>

OctetSequence
(from CF)

<<CORBATypedef>>

<<Uses>>

Control_Type
Payload_Type

SimplePacket

maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(control : in ControlType, payload : in PayloadType) : void

(from PacketAPI)

<<API Building Block>>

<<bind>>

Figure 6.2-4 UML for TransmitPacketPhys_XYZ

SCA Developer’s Guide Rev 1.1

Raytheon Page 48 of 78

6.2.2.4 Constructing A New Service Group
Table 6.1-2 shows that a new class, SetMode, is needed for the XYZ waveform.
Defining this class is the same as developing IDL for any simple new class.

Figure 6.2-5 shows interface class SetMode using UML notation.

6.2.2.5 Combining Service Groups to Form A New Interface
As is discussed in section 6.3.1.2, normally a uses port is implemented as a pointer of an appropriate type.
If a provides port realizes more than one interface, then a uses port can access only the one type associated
with the uses port pointer. Thus, the implementation phase of software development is simplified if all
interfaces used or provided at a single port are combined into a single ("integrating") interface.

SetMode

setMode(newMode : in ModeType) : void

<<Interface>>

ModeType
VOICE_MODE
DATA_MODE

<<CORBAEnum>>

<<uses>>

Figure 6.2-5 UML for SetMode

SCA Developer’s Guide Rev 1.1

Raytheon Page 49 of 78

Figure 6.2-6, which is a modification of the relevant portions of Figure 6.1-1, shows which operations
connect through each port for the simple XYZ waveform.21

 Control_Physical_XYZ

 UserProvider_Physical_XYZ

Figure 6.2-6 Assignment of Ports for XYZ Physical Layer

TransmitPacketPhys_XYZ is used by messages moving upstream from this Physical layer to the "attached
layer"22. TransmitPacketPhys_XYZ is used also by messages moving downstream from the "attached
layer" to this Physical layer. Consequently, TransmitPacketPhys_XYZ is renamed
"UserProvider_Physical_XYZ" for the remainder of this guide.

21 In this, and future diagrams, each connection to the UI is shown as a single arrow, because a typical
system uses return from "downward" call to communicate results "upward" to UI.
22 Depending upon system design, this Physical layer could be attached either to the Physical layer of
another application (as is done in this example) or to the MAC layer of the same application (as is done in
Section 6.2.3). For the remainder of this guide, we use the term "attached layer" to mean the corresponding
layer in another application or higher layer in current application that is connected to the upstream ports of
the layer under discussion.

Waveform
Physical Layer

 Transmit_Inhibit
 (6.1.2.3-c) inhibitTransmit

 SetMode
 (6.1.2.3-d) setMode

 TransmitPacketPhys_XYZ
 (6.1.2.2-a) signalDetected
 (6.1.2.2-b) pushPacket

 CF::Resource

 LogService::Log

SCA Developer’s Guide Rev 1.1

Raytheon Page 50 of 78

A new class, labeled here as "Control_Physical_XYZ", serves as the interface with the UI. Figure 6.2-7
uses UML to define the Control_Physical_XYZ interface class.

6.2.2.6 Completing the Waveform Interface
The procedures described and demonstrated in sections 6.1.1 through 6.2.2.5 determine which interfaces,
including CF::Resource (or, in the case of a device, CF::Device), are needed by the component. Sections
6.3.1 through 6.3.1.2 show how these design decisions are translated into the implementation of ports.

After design of interfaces is complete, IDL can be generated for the new interfaces. Appendix B contains
the IDL generated from the design for waveform XYZ (presented in sections 6.2.2 through 6.2.2.5).

Control_Physical_XYZ
<<Interface>>

SetMode

setMode()

(from XYZ_Physical_NRT)

<<Interface>>
Transmit_Inhibit

inhibitTransmit()

(from PhysicalNonRealTimeAPI)

<<Interface>>

Figure 6.2-7 UML for Control_Physical_XYZ

SCA Developer’s Guide Rev 1.1

Raytheon Page 51 of 78

6.2.3 Waveforms with MAC Layer

6.2.3.1 Explanation of the Task
XYZ is an example of a waveform that is implemented by using Physical layer functionality only.
Now assume that waveform XYZa is created by adding optional error-correcting functionality to XYZ.
Error correcting is provided by ChannelErrorControl BB (see Section 3.3), so XYZa needs to include a
MAC layer filter to provide the required error-correcting capabilities. Figure 6.2-8 shows how figure 6.1-1
is modified to provide error-correcting functionality.23

 to/from
 attached
 layer

UI

Waveform
Physical Layer

Modem

Waveform
MAC Layer

Figure 6.2-8 Two-Layer Waveform Application

6.2.3.2 Solution Using MAC Building Block(s)
Two MAC Layer ports, those that connect to the Physical Layer, require interfaces which were previously
defined for the Physical Layer, so only three ports remain to be analyzed.

23 in order to simplify drawings, resource and log ports are omitted from this, and later,
waveform drawings

SCA Developer’s Guide Rev 1.1

Raytheon Page 52 of 78

Packet structure defined by the MAC layer is the same as that defined by the Physical layer. However, the
XYZ MAC layer must enable an object to turn error checking ON or OFF, so ChannelErrorControl from
the MAC API must be available at both interfaces for ports connecting the XYZ MAC layer to the
upstream-attached layer.

If the MAC Layer detects an error that it cannot correct, it must notify the upstream-attached layer. Thus,
the upstream uses interface includes an additional operation called errorDetected.

Figure 6.2-9 shows the complete interface classes - named "Provider_MAC_XYZ" and
"User_MAC_XYZ") - for ports connecting the XYZ MAC Layer to the upstream attached layer.

Although no attributes are shown in this abbreviated example, we assume that the designer does include
attributes corresponding to characteristics of the system. All control of the XYZ MAC layer is
accomplished by using the CF::Resource::configure operation to update these object attributes, so no
further IDL is needed by the XYZ MAC layer.

TransmitPacketMAC

pushPacket(control : in NullControlMAC, payload : in CF::OctetSequence) : void

<<Interface>>

OctetSequence
(from CF)

<<CORBATypedef>>

<<uses>>

NullControlMAC
dummy : char

<<CORBAStruct>>

<<uses>>

Provider_MAC_XYZ

signalDetected(signalPresent : in boolean) : void

<<Interface>>

User_MAC_XYZ

errorDetected(errorPresent : in boolean) : void

<<Interface>>

Control_Type
Payload_Type

SimplePacket

maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(control : in ControlType, payload : in PayloadType) : void

(from PacketAPI)

<<API Building Block>>

ChannelErrorControl

ChannelErrorControl(ErrorControl : in boolean) : void

(from MACAPI)

<<Interface>>

<<bind>>

Figure 6.2-9 UML for MAC Layer

SCA Developer’s Guide Rev 1.1

Raytheon Page 53 of 78

6.2.4 Waveforms with Link Layer

6.2.4.1 Explanation of the Task
XYZa is an example of a waveform which was implemented by using Physical and MAC layer
functionality only. Now assume that waveform XYZb communicates over an unreliable network link, and
notifies the sender whenever erroneous data is rejected. Examining Section 3.2 - 3.5 reveals that the most
straightforward way to provide error notification capability is to include an LLC layer implementing
connectionless service. Figure 6.2-10 shows how figure 6.2-8 is modified to provide this added
functionality.

 to/from
 network

Modem

Waveform
Physical Layer

UI

Waveform
MAC Layer

Waveform
LLC Layer

Figure 6.2-10 Three-Layer Waveform Implementation

SCA Developer’s Guide Rev 1.1

Raytheon Page 54 of 78

The LLC API specifies interfaces for the Connectionless mode. Figure 6.2-11 shows structures needed to
support these interfaces. The actual interfaces are shown in Figures 6.2-12 (downstream interface - named
simply "Provider") and 6.2-13 (upstream interface - named simply "User"), respectively.

RequestHeaderType
destinationAddress : DLSAPAddressType
priority : unsigned long

<<CORBAStruct>>

DLSAPAddressType
sap : unsigned long
address : CF::OctetSequence

<<CORBAStruct>>

IndicatorHeaderType

destinationAddress : DLSAPAddressType
sourceAddress : DLSAPAddressType
isGroupAddress : boolean

<<CORBAStruct>>

<<uses>> <<uses>>

Control_Type
Payload_Type

Packet
maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : in octet, control : in ControlType, payload : in PayloadType) : void
spaceAvailable(priorityQueueID : in octet) : short
enableFlowControlSignals(enable : in boolean) : void
enableEmptySignal(enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

<<API Building Block>>

ProviderQueue
maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : in octet, control : in RequestHeaderType, payload : in CF::OctetSequence) : void
spaceAvailable(priorityQueueID : in octet) : unsigned long
enableFlowControlSignals(enable : in boolean) : void
enableEmptySignal(enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

<<Interface>>

UserQueue
maxPayloadSize : unsigned short
mainPayloadSize : unsigned short

pushPacket(priority : in octet, control : in IndicatorHeaderType, payload : in CF::OctetSequence) : void
spaceAvailable(priorityQueueID : in octet) : short
enableFlowControlSignals(enable : in boolean) : void
enableEmptySignal(enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

<<Interface>>

<<uses>>

<<uses>>

OctetSequence
(from CF)

<<CORBATypedef>>

<<uses>>

<<uses>>

<<uses>>

<<bind>>

<<bind>>

Figure 6.2-11 UML for LLC Layer

SCA Developer’s Guide Rev 1.1

Raytheon Page 55 of 78

PacketSignals

signalHighWatermark()
signalLowWaterMark()
signalEmpty()

<<Interface>>

User

signalError(destinationAddress : in DLSAPAddressType, error : in PacketErrorType) : void

<<Interface>>

<<uses>> <<uses>>

PacketErrorType
usageError : ServiceErrorType
errNo : unsigned long

<<CORBAStruct>>
DLSAPAddressType

sap : unsigned long
address : CF::OctetSequence

<<CORBAStruct>>

UserQueue
maxPayloadSize : unsigned short
mainPayloadSize : unsigned short

pushPacket()
spaceAvailable()
enableFlowControlSignals()
enableEmptySignal()
setNumOfPriorityQueues()

<<Interface>>

Figure 6.2-13 UML for LLC User Interface

ProviderQueue
maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket()
spaceAvailable()
enableFlowControlSignals()
enableEmptySignal()
setNumOfPriorityQueues()

<<Interface>>

PacketSignals

signalHighWatermark()
signalLowWaterMark()
signalEmpty()

<<Interface>>

Provider
<<Interface>>

Figure 6.2-12 UML for LLC Provider Interface

SCA Developer’s Guide Rev 1.1

Raytheon Page 56 of 78

6.2.5 AssemblyController
Waveform XYZb, as developed in sections 6.2.4 - 6.2.4.1, consists of three independent layers. This three-
layer design is consistent with API Supplement requirements and with ISO network design methodology.
However, the SCA requires that the Application implementation delegate all Resource operations other
than getPort to a software component called the "Assembly Controller", which is identified by the
assemblycontroller element of the Software Assembly Descriptor (SAD) XML file. Thus, an
AssemblyController is added to Waveform XYZb, resulting in Waveform XYZc, as shown in
Figure 6.2-14.

 to/from
 attached app

Modem

Waveform
Physical Layer

UI

Waveform
MAC Layer

Waveform
LLC Layer

Assembly
Controller

Figure 6.2-14 Waveform with Assembly Controller

In this design, ports are used to connect the AssemblyController to other waveform components. These
ports enable connections between the components to be defined in the SAD XML file. The ports would not
be needed if connection logic for the AssemblyController were hard-coded into the AssemblyController or
if none of the connections were needed.

SCA Developer’s Guide Rev 1.1

Raytheon Page 57 of 78

Often, the AssemblyController implements only functionality that was already located somewhere in the
waveform software design. That is, no new interfaces will be realized in the AssemblyController. In that
case, which is true for our XYZ Waveform example, no new interfaces are needed, so nothing needs to be
added to the IDL.

6.3 Refining API Definitions with Implementation Design

6.3.1 Use of Interfaces
Figure 6.3-1 is excerpted and modified from Figures 6.2-6, 6.2-8, and 6.2-9 to focus on the use of ports by
waveform software. Each port is labeled with either a "U" (for uses port) or a "P" (for provides port)24.
A uses port requests data or service from another component, while a provides port returns requested data
or performs a requested service. An SCA-compliant application is built using CORBA to implement
client-server connections. Under this model, software assumes the role of client when it is calling through
a uses port, and the role of a servant (within a server) when it is answering at a provides port.

 {User_MAC_XYZ}

 {Resource}

 P20
{Control_Physical_XYZ}

{Resource} U21
 U22 {Log}
 P10 P12 P21

U12 {Log} P20 U20
 U11 {UserProvider_Physical_XYZ}

 P11 {UserProvider_Physical_XYZ}

 {Provider_MAC_XYZ}

Figure 6.3-1 Port Connections for Physical and MAC Layers

Further examining Figure 6.3-1, we can see that a message that is sent by the MAC layer from port U20 is
the result of a message that was received at port P21. Correspondingly, a message that is sent by the MAC
layer from port U21 is the result of a message that was received at port P20.

24 The name of the interface used or provided at the port is included in braces {}.

Waveform
Physical Layer

Waveform
MAC Layer

SCA Developer’s Guide Rev 1.1

Raytheon Page 58 of 78

6.3.1.1 Implementing A Provides Port
Since a Provides Port is implemented as servant software, the waveform software must inherit from the
IDL-generated skeleton class for the interface at that port, as described in section 5.6. The waveform
software "realizes" this class by implementing each operation included in the class. If functionality for
some operation in the class is not appropriate for the waveform, then the software should implement the
operation anyway, even if it is a "stub" operation (i.e., an operation with no instructions)25.

6.3.1.2 Implementing A Uses Port
Since a Uses Port is implemented as client software, the waveform software calls the corresponding servant
software. To accomplish this, the client software maintains a pointer (of the correct type) to the servant.
Good practice suggests using a CORBA _var type, because this "intelligent pointer" relieves the
programmer of most responsibilities relating to memory management. Before the pointer can be used,
however, the operation connectPort() must be called to establish a value for it.

6.3.1.3 Implementing Multiple Ports
Our examples tend to show exactly one Uses Port connected to exactly one Provides Port, but the actual
requirements allow one-to-many, many-to-one, and many-to-many connections. Connecting many users to
one provider ("many-to-one") has no effect on the servant software, because the result is simply that more
than one pointer contains the address of the provider object.26 Connecting many providers to one user
("to-many") adds complexity - it requires that the simple pointer to the provider be replaced by an array27
of pointers, and the software must loop through the array each time the port is used.

6.3.1.4 Implementing getPort()
An application can consist of one or more CORBA objects. Each application is created by the Core
Framework's ApplicationFactory implementation according to instructions provided in the appropriate
XML document. The XML specifies particular objects to be created by the ApplicationFactory; each of
these objects must implement the CF::Resource interface. An object created by the ApplicationFactory
may create and activate other objects28, but the ApplicationFactory is not aware of them. If an object
(which we shall call A0) creates another object (which we shall call A1), the ApplicationFactory invokes the
getPort operation implemented by A0 to locate ports located in A1. The designer of the application has two
choices for handling a getPort request for ports that are located in A1.
?? the getPort operation implemented by A0 provides A1 port addresses to the Core Framework
?? the getPort operation implemented by A0 delegates the request to some operation (perhaps even

another getPort) implemented by A1.

25 Of course, under some conditions, invoking an error return would be more appropriate.

26 Figure 6.3-4 is an example showing three uses ports connected to the provides Log port

27 or CORBA sequence

28 These additional objects need not implement CF::Resource.

SCA Developer’s Guide Rev 1.1

Raytheon Page 59 of 78

6.3.2 Model for Physical Layer

6.3.2.1 Unified Design
Figure 6.3-2 shows a single-class implementation design for waveform XYZ's physical layer.
This object inherits from CF::Port so that it can connect each uses port to a corresponding provides port.
It also inherits from each interface implemented as a provides port, and has an association for each uses
port.29 In this example design, a single operation ("performAction") is included to provide an interface
with the modem hardware.

29 As already described in section 6.3.1.2, the code generated from this part of the model would be pointers
of the right type. For example, logVar would be a pointer which is able to point to an implementation of
LogService::Log, and userVar would be a pointer able to point to an implementation of
UserProvider_Physical_XYZ. The CoreFramework's ApplicationFactory implementation would be
instructed via XML to invoke connectPort to link the first pointer to the actual log provides-port and the
second pointer to an actual physical-layer provides-port.

UserProvider_Physical_XYZ
(from POA_XYZ_Physical_RT)Port

(from POA_CF)

Resource
(from POA_CF)

Log_var
(from LogService)

UserProvider_Physical_XYZ_var
(from XYZ_Physical_RT)

XYZ_Physical

agcSquelch : long = 0
noiseSquelch : long = 0
frequency : long = 37000000
txnSpeed : long = 2400
powerLevel : long = 0

configure()
connectPort()
disconnectPort()
getPort()
inhibitTransmit()
initialize()
query()
releaseObject()
runTest()
setMode()
signalDetected()
pushPacket()
performAction()

-logVar -userVar

Control_Physical_XYZ
(from POA_XYZ)

Figure 6.3-2 Unified Design for XYZ's Physical Layer

SCA Developer’s Guide Rev 1.1

Raytheon Page 60 of 78

6.3.2.2 Partitioned Design
Figure 6.3-3 shows a multiple-class implementation design for waveform XYZ's physical layer.
XYZ_Physical_Control, which is created directly by the Core Framework as described in section 6.3.1.4,
provides resource and control ports. XYZ_Physical_Packets, which is created by XYZ_Physical_Control,
provides the data handling port. Uses ports are assigned to objects in such a way as to simplify program
design. XYZ_Physical_Communicate is an additional object containing (static) common operations
needed by operations in the other objects; the "performAction()" operation, which provides an interface
with the modem hardware, was included in XYZ_Physical_Communicate. The application has two uses
ports for logging, because each object may have a need to make entries in the Log. The XML shows two
different ports, each having a different name, to be attached to the Log object. The getPort operation
implemented by XYZ_Physical_Control reports the address of XYZ_Physical_Control for one log object
name, and the address of XYZ_Physical_Packets for the other name. Both objects inherit from CF::Port,
because both provide connectPort services. 30

After the design is complete, the model is used to generate source code templates as described in section
5.7, and the programmer adds any needed details. Appendix C contains a C++ header file generated from
the design presented in this section.

30 The designs presented in this guide are not intended to be complete. For example, local communications
(in this case between XYZ_Physical_Control and XYZ_Physical_Packets) are not included. The links
between these objects are standard links (not involving CORBA), so this communicating could be done by
any means (function calls, queues, etc) normally used to communicate between local objects in the
implementation language of choice, assuming of course, that SCA requirements are satisfied.

Control_Physical_XYZ
(from POA_XYZ) Port

(from POA_CF)

Resource
(from POA_CF)

XYZ_Physical_Communicate

performAction()

UserProvider_Physical_XYZ
(from POA_XYZ_Physical_RT)

UserProvider_Physical_XYZ_var
(from XYZ_Physical_RT)

XYZ_Physical_Packets

pushPacket()
signalDetected()
connectPort()
disconnectPort()

<<uses>>

-userVar

Log_var
(from LogService)

-logVar

XYZ_Physical_Control
agcSquelch : long = 0
noiseSquelch : long = 0
frequency : long = 37000000
txnSpeed : long = 2400
powerLevel : long = 0

configure()
connectPort()
disconnectPort()
getPort()
initialize()
query()
releaseObject()
runTest()
setMode()
inhibitTransmit()

<<uses>>

-packPtr

-logVar

Figure 6.3-3 Partitioned Design for XYZ's Physical layer

SCA Developer’s Guide Rev 1.1

Raytheon Page 61 of 78

6.3.3 Model for MAC Layer
Figure 6.3-4 shows a partitioned design for the XYZ MAC layer. As is true of all multi-object designs, one
object is created directly by the Core Framework's ApplicationFactory implementation. This object
(XYZ_MAC_Control), which provides resource and control ports, is responsible for creating the other
objects. There is a natural pairing of ports based upon the flow of messages. This natural pairing is
reflected in the assignment of ports to objects, as one object moves messages "downstream" and the other
moves messages "upstream".

Port
(from POA_CF)

Resource
(from POA_CF)

UserProvider_Physical_XYZ
(from POA_XYZ_Physical_RT) Provider_MAC_XYZ

(from POA_XYZ_MAC)

User_MAC_XYZ_var
(from XYZ_MAC)

XYZ_MAC_Upstream

connectPort()
disconnectPort()
pushPacket()
signalDetected()

XYZ_MAC_Control
errorControlOn : boolean = 0

configure()
connectPort()
disconnectPort()
getPort()
initialize()
query()
releaseObject()
runTest()

-upstreamVar

Log_var
(from LogService)

XYZ_MAC_Downstream

connectPort()
disconnectPort()
pushPacket()
signalDetected()
ChannelErrorControl()

-downstreamVar

UserProvider_Physical_XYZ_var
(from XYZ_Physical_RT)

-userVar

-logVar

-logVar

-logVar -userVar

Figure 6.3-4 Partitioned Design for XYZ's MAC Layer

SCA Developer’s Guide Rev 1.1

Raytheon Page 62 of 78

6.3.4 Model for Link Layer
Functionally, the XYZ Link layer performs tasks that are completely different from those performed by the
MAC layer. However, the MAC layer handles two flows of messages, one downstream from an attached
layer to the Physical layer, and one upstream from the Physical layer to the attached layer. Likewise, the
Link layer handles two flows of messages, one downstream from an attached layer to the MAC layer, and
one upstream from the MAC layer to the attached layer. Not surprisingly, then, the structure of the Link
layer shown in Figure 6.3-5 is very similar to the structure of the MAC layer shown in Figure 6.3-4. In this
particular case, the API includes several operations that are not needed for our application (in this example,
that would include all of the operations related to flow-control). C++ errors tend to occur if there is no
implementation for an operation included in the interface, so the implementation code should include each
of these operations (even if the code does nothing).

Port
(from POA_CF)

Resource
(from POA_CF)

Provider_MAC_XYZ
(from POA_XYZ_MAC)

Provider
(from POA_LogicalLinkControlAPI)

User_MAC_XYZ_var
(from XYZ_MAC)

Log_var
(from LogService)

User_var
(from LogicalLinkControlAPI)

XYZ_LLC_Upstream

connectPort()
disconnectPort()
pushPacket()
signalDetected()

-logVar
-userVar

XYZ_LLC_Control

configure()
connectPort()
disconnectPort()
getPort()
initialize()
query()
releaseObject()
runTest()

-logVar

XYZ_LLC_Downstream

connectPort()
disconnectPort()
enableEmptySignal()
enableFlowControlSignals()
pushPacket()
setNumOfPriorityQueues()
signalEmpty()
signalHighWatermark()
signalLowWaterMark()
spaceAvailable()

-userVar

-logVar

-upstreamVar

-downstreamVar

Figure 6.3-5 Partitioned Designed for XYZ's LLC Layer

SCA Developer’s Guide Rev 1.1

Raytheon Page 63 of 78

6.3.5 Model for AssemblyController
The AssemblyController connects to three different layers, but only two ports are involved, because most
of the activity occurs on the CF::Resource interface. The CF::Resource uses port is presented as a 1:3
association named layerResourceVar. The XML presents association layerResourceVar as three different
ports, each port having a unique name, and the XML instructs the Core Framework's ApplicationFactory
implementation to connect each of these ports to the CF::Resource port of one of the layers. Association
layerResourceVar could be implemented in various ways, but a common approach consists of using an
array of three pointers, each pointer corresponding to one of the names used by the XML when instructing
the Core Framework. The UML for the AssemblyController is shown in Figure 6.3-6.

Port
(from POA_CF)

Resource
(from POA_CF)

Control_Physical_XYZ
(from POA_XYZ)

Resource_var
(from CF)

Log_var
(from LogService)

Control_Physical_XYZ_var
(from XYZ)

XYZ_AssemblyController

3

1
-layerResourceVar

3

1

-logVar

-layerControlVar

Figure 6.3-6 Design for XYZ's Assembly Controller

SCA Developer’s Guide Rev 1.1

Raytheon Page 64 of 78

7 Device Creation

7.1 Device Interfaces
The device interfaces are for the implementation and management of logical Devices within the domain.
The device interfaces include Device, LoadableDevice, ExecutableDevice, and AggregateDevice. The
devices within the domain can be simp le devices with no loadable, executable, or aggregate device
behavior, or devices with a combination of these behaviors. Device Management is accomplished by the
DeviceManager interface, which is responsible for creation of logical Devices and launching service
applications on these logical Devices.

7.1.1 Device
A Device is a type of Resource within the domain having the requirements as stated in the Resource
interface. This interface defines additional capabilities and attributes for any logical Device in the domain.
A logical Device is a functional abstraction for a set (e.g., zero or more) of hardware devices and provides
the following attributes and operations:
Software Profile Attribute – This SPD XML profile defines the logical Device capabilities (data/command
uses and provides ports, configure and query properties, capacity properties, status properties, etc.), which
could be a subset of the hardware device’s capabilities.
State Management & Status Attributes – This information describes the administrative, usage, and
operational states of the device.
Capacity Operations - In order to use a device, certain capacities (e.g., memory, performance, etc.) must be
obtained from the Device. The capacity properties vary among devices and are described in the Software
Profile. A device may have multiple allocatable capacities, each having its own unique capacity model.
I

Device

usageState : UsageType
adminState : AdminType
operationalState : OperationalType
softwareProfile : string
label : string
compositeDevice : AggregateDevice

allocateCapacity(capacities : in Properties) : boolean
deallocateCapacity(capacities : in Properties) : void

<<Interface>>

uses

Resource
<<Interface>>

Properties
<<CORBATypedef>>

AggregateDevice
<<Interface>>

Figure 7.1-1 Device CORBA Interface UML

SCA Developer’s Guide Rev 1.1

Raytheon Page 65 of 78

The Device interface provides the following operations:

allocateCapacity() : boolean
The allocateCapacity operation is used to allocate properties available to the device; the value
returned reports whether the allocation was successful. In the simplest case, the property is a simple
binary value (IDLE or BUSY), and the allocateCapacity operation is used to reserve the device (the
operation would return FALSE if the device was in use already).

deallocateCapacity() : void
The deallocateCapacity operation is used to deallocate properties that had previously been allocated
by use of the allocateCapacity operation. In the simplest case, the deallocateCapacity operation is
used to return a device to its IDLE condition so that it will be available to other users.

7.1.2 LoadableDevice
This interface extends the Device interface by adding software loading and unloading behavior, thereby
enabling software to control what is in memory available to the device. Thus, FPGA contents can be
changed, and/or a digital signal processor can run a choice of code (for example, either AM or FM).

LoadableDevice

load(fs : in FileSystem, fileName : in string, loadKind : in LoadType) : void
unload(fileName : in string) : void

<<Interface>>

FileSystem
<<Interface>>

InvalidFileName
<<CORBAException>>

Device
usageState : UsageType
adminState : AdminType
operationalState : OperationalType
softwareProfile : string
label : string
compositeDevice : AggregateDevice

allocateCapacity()
deallocateCapacity()

<<Interface>>

Figure 7.1-2 LoadableDevice CORBA Interface UML

The LoadableDevice interface provides the following operations:

load() : void
The load operation is used to load a file into memory. If the specified file is already loaded, a load
count is incremented, but the file is not reloaded.

unload() : void
The unload operation causes the load count to be decremented. If the count has reached zero
(i.e.., no more users remain for the specified file) then the memory is returned to its default condition.

SCA Developer’s Guide Rev 1.1

Raytheon Page 66 of 78

7.1.3 ExecutableDevice
This interface extends the LoadableDevice interface by adding execute and terminate behavior, thereby
enabling software to determine exactly when programs will execute on the device. Thus, execution time is
not necessarily connected to load time (e.g, a program need not be "load-and-go").

LoadableDevice

load()
unload()

<<Interface>>

ExecutableDevice

execute(name : in string, options : in Properties, parameters : in Properties) : ProcessID_Type
terminate(processId : in ProcessID_Type) : void

<<Interface>>

InvalidFileName
msg : string

<<CORBAException>>
Properties

<<CORBATypedef>>

Figure 7.1-3 ExecutableDevice CORBA Interface UML

The ExecutableDevice interface extends the LoadableDevice interface by adding these operations:

execute() : Process_ID_Type
The execute operation is used to start the program, allowing the initiatiating software to pass
parameters that will be received by the program in an argv vector as used by a standard POSIX exec
call.

terminate() : void
The terminate operation is used to end a program that was started by use of the execute function

SCA Developer’s Guide Rev 1.1

Raytheon Page 67 of 78

7.1.4 AggregateDevice
The AggregateDevice interface provides behavior that can be used to add and remove Devices from a
composite device. This interface can be provided via inheritance or as a "provides port” for any device that
is capable of an aggregate structure31. Aggregated Devices use this interface to add or remove themselves
from a composite device when being created or torn-down.

AggregateDevice

devices : DeviceSequence

addDevice(associatedDevice : in Device) : void
removeDevice(associatedDevice : in Device) : void

<<Interface>>

Device
<<Interface>>

DeviceSequence
<<CORBATypedef>>

InvalidObjectReference

msg : string

<<CORBAException>>

Figure 7.1-4 AggregateDevice CORBA Interface UML

7.1.5 DeviceManager
The DeviceManager interface is used to manage a set of logical Devices and services. The interface for a
DeviceManager is based upon its attributes, which are:
?? Device Configuration Profile - a mapping of physical device locations to meaningful labels (e.g.,

audio1, serial1, etc.), along with the Devices and services to be deployed
?? File System - the FileSystem associated with this DeviceManager
?? Device Manager Identifier - the instance-unique identifier for this DeviceManager
?? Device Manager Label - a meaningful name given to this DeviceManager
?? Registered Devices - a list of Devices that have registered with this DeviceManager
?? Registered Services - a list of Services that have registered with this DeviceManager

31 This interface is most useful for situations in which a single piece of hardware contains units that are
handled as separate devices by an SCA application.

SCA Developer’s Guide Rev 1.1

Raytheon Page 68 of 78

uses

FileSystem
<<Interface>>

DeviceManager
deviceConfigurationProfile : string
fileSys : FileSystem
identifier : string
label : string
registeredDevices : DeviceSequence
registeredServices : ServiceSequence

registerDevice(registeringDevice : in Device) : void
unregisterDevice(registeredDevice : in Device) : void
shutdown() : void
registerService(registeringService : in Object, name : in string) : void
unregisterService(registeredService : in Object, name : in string) : void
getComponentImplementationId(componentInstantiationId : in string) : string

<<Interface>>

DeviceSequence
<<CORBATypedef>>

Device
<<Interface>>

InvalidObjectReference
msg : string

<<CORBAException>>

PropertySet

configure()
query()

<<Interface>>

PortSupplier

getPort()

<<Interface>>

Figure 7.1-5 DeviceManager CORBA Interface UML

SCA Developer’s Guide Rev 1.1

Raytheon Page 69 of 78

7.1.6 Defining the Device
This section describes the process of selecting the appropriate device interfaces for a device
implementation, and the relationship to the device XML.

7.1.6.1 Selecting the Appropriate Device Interface
As is indicated in section 7.1, the device can be of type Device, LoadableDevice, or ExecutableDevice.32
In addition to the device type, the designer must also select a means of communicating with the
waveform(s) that make use of the device.

As an example, we consider an audio device that is attached to the XYZ waveform described in sections
6.2.2 and 6.3.2. The audio device will have generic audio ports. A simple software application would be
inserted between the device and the XYZ waveform to translate between the two data port forms.
Figure 7.1-6 shows which interface is associated with each of the device's ports.

 downstream data
 and
 upstream flow control {Device}

 {Log}

 upstream data
 and
 downstream flow control

Figure 7.1-6 Audio Device Ports

32 Since an AggregateDevice is a composite of devices, the logic presented in Section 7.1.6.1 would be
applied multiple times for an AggregateDevice.

Audio
Device

SCA Developer’s Guide Rev 1.1

Raytheon Page 70 of 78

7.1.6.2 Designing a Device Servant
Although the specifics of inheritance are different, designing a device servant is very similar to designing a
waveform application. If the "downstream" and "upstream" data flows and flow controls are the same, the
audio device realizes only two interfaces; Device (from section 7.1.1) and an appropriate interface built
from I/O API Building Blocks.

Using UML notation, Figure 7.1-7 shows a simple I/O interface.

UserProvider_AnalogAudio
<<Interface>>

Control_Type
Payload_Type

Packet

maxPayloadSize : unsigned short
minPayloadSize : unsigned short

pushPacket(priority : in octet, control : in ControlType, payload : in PayloadType) : void
spaceAvailable(priorityQueueID : in octet) : short
enableFlowControlSignals(enable : in boolean) : void
enableEmptySignal(enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

(from PacketAPI)

<<API Building Block>>

AnalogAudioPacket

maxPayloadSize : unsigned short = 160
minPayloadSize : unsigned short = 1

pushPacket(priority : in octet, control : in AnalogControlType, payload : in AnalogPayloadType) : void
spaceAvailable(priorityQueueID : in octet) : short
enableFlowControlSignals(enable : in boolean) : void
enableEmptySignal(enable : in boolean) : void
setNumOfPriorityQueues(numOfPriorities : in octet) : void

<<Interface>>

AnalogControlType
PayloadSize : unsigned short
PayloadId : unsigned short

<<CORBAStruct>>

AnalogPayloadType
<<CORBATypedef>>

<<bind>>

<<uses>> <<uses>>

AnalogPacketSignals
<<Interface>>

PacketSignals

signalHighWatermark(priorityQueueID : in octet) : void
signalLowWaterMark(priorityQueueID : in octet) : void
signalEmpty() : void

(from PacketAPI)

<<Interface>>

Figure 7.1-7 UML for AudioDevice

SCA Developer’s Guide Rev 1.1

Raytheon Page 71 of 78

 Using UML notation, Figure 7.1-8 shows a partitioned design for the resulting audio device.

Port
(from POA_CF)Device

(from POA_CF)

UserProvider_AnalogAudio
(from POA_IOAPI)

UserProvider_AnalogAudio_var
(from IOAPI)

AudioDevice

allocateCapacity()
configure()
connectPort()
deallocateCapacity()
disconnectPort()
getPort()
initialize()
load()
query()
releaseObject()
runTest()
unload()

AudioDeviceXYZ

connectPort()
disconnectPort()
pushPacket()
signalDetected()

-xyzPtr

-userVar

Log_var
(from LogService)

-logVar-logVar

Figure 7.1-8 Design for Audio Device

SCA Developer’s Guide Rev 1.1

Raytheon Page 72 of 78

7.1.6.3 Device Configuration Descriptor
This section describes the XML elements of the Device Configuration Descriptor (DCD) XML file. The
deviceconfiguration element is the root element of the DCD. The DCD is based on the SAD (e.g.,
componentfiles, partitioning, etc.) DTD. The intent of the DCD is to provide the means of describing the
components that are initially started on the CF DeviceManager node, how to obtain the CF
DomainManager object reference, connections of services to components (CF Devices, CF
DeviceManager), and the characteristics (file system names, etc.) for a CF DeviceManager. The
componentfiles and partitioning elements are optional; if not provided, this implies no components are
started up on the node, except for a CF DeviceManager. If the partitioning element is specified then a
componentfiles element must also be specified.

The deviceconfiguration element’s id attribute is a unique identifier within the domain for the device
configuration. This id attribute is a UUID value as specified in section 4.1. The name attribute is the user-
friendly name for the CF DeviceManager’s label attribute.

deviceconfiguration

id : ID
name : CDATA

<<DTDElement>>

devicemanagersoftpkg
<<DTDElement>>

componentfiles
<<DTDElement>>

partitioning
<<DTDElement>>

connections
<<DTDElement>>

domainmanager
<<DTDElement>>

filesystemnames
<<DTDElement>>

deviceconfiguration_grp
(from deviceconfiguration)

<<DTDSequenceGroup>>

{2}

0..10..1

{3}

0..10..1

{4}

0..10..1

{5}

{6}

0..10..1

{7}

description
<<DTDElementPCDATA>>

0..10..1{1}

Figure 7.1-9 deviceconfiguration Element Relationships

A DCD should be provided as part of the software documentation for a DeviceManager implementation.
The DCD should contain all of the mandatory XML elements as well as many of the optional elements.
For example, the description element of the DCD is optional but should be provided. The description
element can be used to provide text information about the DeviceManager implementation and how the
DCD is utilized by the implementation. As another example, the fileSystems element is optional but could
be provided. The fileSystems element documents the names of the host file systems for which the
DeviceManager implementation should create FileSystem servers components. If the fileSystems DCD
element is not provided the description element or XML comment should indicate whether a system
integrator could add the fileSystems XML element at deployment time. This would indicate that the
DeviceManager implementation has the capability to generically create CF::FileSystems for the host file
systems specified by the fileSystems DCD element.

SCA Developer’s Guide Rev 1.1

Raytheon Page 73 of 78

7.2 Device Package Descriptor
The SCA Device Package Descriptor (DPD) is the part of a Device Profile that contains hardware device
Registration attributes, which are typically used by a Human Computer Interface application to display
information about the device(s) resident in a SCA-compliant radio system. DPD information is intended to
provide hardware configuration and revision information to a radio operator or to radio maintenance
personnel. A DPD may be used to describe a single hardware element residing in a radio or it may be used
to describe the complete hardware structure of a radio. In either case, the description of the hardware
structure should be consistent with hardware partitioning as described in the Hardware Architecture
Definition in section 4.0 of the SCA.

The devicepkg element is the root element of the DPD. The devicepkg id attribute uniquely identifies the
package and is a DCE UUID, as defined in section 4.1. The version attribute specifies the version of the
devicepkg. The format of the version string is numerical major and minor version numbers separated by
commas (e.g., "1,0,0,0"). The name attribute is a user-friendly label for the devicepkg

devicepkg
id : ID
name : CDATA
version : CDATA

<<DTDElement>>

hwdeviceregistration
id : ID
name : CDATA
version : CDATA

<<DTDElement>>
title

<<DTDElementPCDATA>>
author

<<DTDElement>>

devicepkg_grp
(from devicepkg)

<<DTDSequenceGroup>>

{4}

0..10..1
{1}

1..n1..n
{2}

description
<<DTDElementPCDATA>>

0..10..1
{3}

Figure 7.2-1 devicepkg Element Relationships

.
A DPD should be provided as part of the documentation for a hardware device. The DPD should contain
all of the mandatory XML elements as well as some of the optional elements. In particular, the description
element of the DPD is optional but should be provided. The description element can be used to provide
text information about the device. The hwdeviceregistration element contains specific information about
the hardware.

SCA Developer’s Guide Rev 1.1

Raytheon Page 74 of 78

hwdeviceregistration
id : ID
name : CDATA
version : CDATA

<<DTDElement>>

manufacturer
<<DTDElementPCDATA>>

modelnumber
<<DTDElementPCDATA>>

deviceclass
<<DTDElement>>

childhwdevice
<<DTDElement>>

propertyfile
type : CDATA

<<DTDElement>>

hwdeviceregistration_grp
(from hwdeviceregistration)

<<DTDSequenceGroup>>

{3} {4}

{5}
0..n0..n

{6}

0..10..1
{1}

description
<<DTDElementPCDATA>>

{2}

Figure 7.2-2 hwdeviceregistration Element Relationships

The hwdeviceregistration element may have any number of childhwdevice elements. Each childhwdevice
element represents a component/subsystem of the device; thus, this structure provides a way of
documenting the complete structure of the hardware device.

SCA Developer’s Guide Rev 1.1

Raytheon Page 75 of 78

7.3 DomainManager Configuration Descriptor
This section describes the XML elements of the DomainManager Configuration Descriptor (DMD) XML
file. The domainmanagerconfiguration element is the root element of the DMD. The
domainmanagerconfiguration element id attribute is a DCE UUID that uniquely identifies the
DomainManager. The id is a DCE UUID value as specified in section 4.1.

domainmanagerconfiguration
id : ID
name : CDATA

<<DTDElement>>

services
<<DTDElement>>

description
<<DTDElementPCDATA>>

devicemanagersoftpkg
<<DTDElement>>

domainmanagerconfiguration_grp
(from domainmanagerconfiguration)

<<DTDSequenceGroup>>

{3}
0..10..1

{1} {2}

Figure 7.3-1 domainmanagerconfiguration Element Relationships

A DMD should be provided as part of the software documentation for a DomainManager implementation.
The DMD should contain all of the XML elements. The description element of the DMD is optional but
should be provided. The description element can be used to provide text information about the
DomainManager implementation and how the DMD is utilized by the implementation. The services
element specifies which service (e.g., Log) instances will be used.

SCA Developer’s Guide Rev 1.1

Raytheon Page 76 of 78

8 UI Discussion

8.1 Introduction
JTRS User Interface applications are used to setup, control, and monitor JTRS compliant Core Framework
and radio applications (waveforms).

The design of an operator console and the methods used to control a JTRS radio platform is radio platform
and program specific. For example, a handheld radio may only provide a small operator keypad and
display, while networked radio system could provide a desktop workstation as the operator console. With
so many variations of operator control of a JTRS radio, no one approach for a UI design can be mandated.
Operator control messages do have to arrive at the waveform application in the form of calls to operations
realizing appropriate CORBA interface(s) - but this requirement can be met in various ways. The following
sections provide examples of UI approaches for a JTRS compliant radio.

8.2 Direct CORBA Links
One approach to delivering CORBA messages to the waveform application is to build the UI itself on a
CORBA platform. This is a natural structure when the operator's console is a workstation running a
graphical user interface (GUI).

An example of a remotely located GUI utilizing Java and CORBA technologies is shown in Figure 8.2-1.
The CF interfaces, defined in the SCA CF IDL, are used in the GUI for control and mo nitoring of the CF.
Waveform specific interface-APIs are used to control the Application waveform. CORBA calls in this
environment are remote calls across the network connection.

In the XYZ example (see section 6.2.2.5, for example) the GUI performs CORBA calls using the
appropriate APIs for the CF components and WF Resource components.

Figure 8.2-1 Direct CORBA Link Block Diagram

Windows OS

ORB Class Library

Java Virtual Machine

CORBA

Stub Code *

* generated with idltojava compiler

Java GUI

ORB

RTOS

CF

Radio
Platform

WF

POSIX API

Network
Connection

SCA Developer’s Guide Rev 1.1

Raytheon Page 77 of 78

8.3 Non-Direct CORBA Links
Another approach is to have "adapter" software in the radio that translates between a proprietary messaging
format and the appropriate SCA-defined CORBA APIs. This method would be especially appropriate if
the operator interface has limited capabilities, or in order to connect a legacy controller to a JTRS-
compliant radio application.

Figure 8.3-1 shows an example of a proprietary controller connected to adapter software in the radio.
A serial link provides the actual physical connection between the controller and the radio. The adapter
converts between the proprietary format and appropriate operations defined in the CF interface and the
waveform-specific interface. CORBA calls in this environment are local calls within the processor.

UI

ORB

RTOS

CF

Radio
Platform

WF

POSIX API

serial
connection

adapter

Figure 8.3-1 Non-direct CORBA Link Block Diagram

In the XYZ example, a proprietary formatted serial message is sent to the radio from the UI. The adapter
processes the message and forwards the call to appropriate component (CF component or WF Resource)
using the proper CF or WF API.

SCA Developer’s Guide Rev 1.1

Raytheon Page 78 of 78

9 Appendices

9.1 Appendix A – XML Introduction

9.2 Appendix B – IDL for XYZ Waveform Physical layer

9.3 Appendix C – Header Files for XYZ Waveform Physical Layer

9.4 Appendix D – XML for a Sample Waveform

9.5 Appendix E – XML for a Sample Device

